A090945 Harmonic numbers (A001599) which are not perfect (A000396).
1, 140, 270, 672, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
Offset: 1
Keywords
Examples
A001599(4) = 140, but 336 = sigma(140) <> 2*140 = 280. Thus, 140 is a harmonic number which is not perfect. - _Muniru A Asiru_, Nov 26 2018
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..930 (terms below 10^14; terms 1..77 from Muniru A Asiru)
- T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput. 73 (2004), 475-491.
Crossrefs
Programs
-
GAP
Concatenation([1],Filtered([2,4..2000000],n->Sigma(n)<>2*n and IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
-
Mathematica
Select[Range[2 10^7], IntegerQ[HarmonicMean[Divisors[#]]] && !DivisorSigma[1, #]==2 # &] (* Vincenzo Librandi, Nov 27 2018 *)
-
PARI
isok(n) = my(sn = sigma(n)); (frac(n*numdiv(n)/sn) == 0) && (sn != 2*n); \\ Michel Marcus, Nov 28 2018