cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090945 Harmonic numbers (A001599) which are not perfect (A000396).

Original entry on oeis.org

1, 140, 270, 672, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
Offset: 1

Views

Author

N. J. A. Sloane, Feb 28 2004

Keywords

Examples

			A001599(4) = 140, but 336 = sigma(140) <> 2*140 = 280. Thus, 140 is a harmonic number which is not perfect. - _Muniru A Asiru_, Nov 26 2018
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.

Crossrefs

Cf. A001599, A003601. Different from A007340.
For the associated harmonic means, see A102408.

Programs

  • GAP
    Concatenation([1],Filtered([2,4..2000000],n->Sigma(n)<>2*n and IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
    
  • Mathematica
    Select[Range[2 10^7], IntegerQ[HarmonicMean[Divisors[#]]] && !DivisorSigma[1, #]==2 # &] (* Vincenzo Librandi, Nov 27 2018 *)
  • PARI
    isok(n) = my(sn = sigma(n)); (frac(n*numdiv(n)/sn) == 0) && (sn != 2*n); \\ Michel Marcus, Nov 28 2018