cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090992 Number of meaningful differential operations of the n-th order on the space R^7.

Original entry on oeis.org

7, 13, 24, 45, 84, 158, 296, 557, 1045, 1966, 3691, 6942, 13038, 24516, 46055, 86585, 162680, 305809, 574624, 1080106, 2029680, 3814941, 7169145, 13474502, 25322375, 47592650, 89441626, 168100324, 315917527, 593742597, 1115852904, 2097145317
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^6. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
Also (starting 4,7,...) the number of zig-zag paths from top to bottom of a rectangle of width 8, whose color is that of the top right corner. - Joseph Myers, Dec 23 2008

Crossrefs

Partial sums of pairwise sums of A065455.

Programs

  • GAP
    a:=[7,13,24,45];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2] - 2*a[n-3] - a[n-4]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 7; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 3, -2, -1}, {7, 13, 24, 45}, 32] (* Jean-François Alcover, Nov 25 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+4) = a(n+3) + 3*a(n+2) - 2*a(n+1) - a(n).
G.f.: x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)). - Colin Barker, Mar 08 2012

Extensions

More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
More terms from Joseph Myers, Dec 23 2008