cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091007 Decimal expansion of Sum_{n>=1} arccot(n^2).

Original entry on oeis.org

1, 4, 2, 4, 7, 4, 1, 7, 7, 8, 4, 2, 9, 9, 8, 0, 8, 8, 9, 7, 6, 1, 5, 4, 7, 8, 0, 6, 8, 8, 9, 2, 3, 4, 1, 5, 2, 8, 0, 2, 0, 6, 6, 3, 3, 4, 6, 0, 1, 8, 1, 8, 0, 4, 0, 6, 5, 7, 2, 4, 5, 7, 7, 3, 1, 3, 7, 1, 1, 3, 8, 6, 3, 0, 2, 1, 0, 3, 1, 9, 6, 5, 8, 1, 5, 4, 9, 9, 2, 0, 8, 4, 9, 8, 5, 1, 7, 6, 6, 3, 1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Dec 13 2003

Keywords

Examples

			1.424741778429980889761547806889234152802066334601818040657245773...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Arctan((1-Cot(Pi(R)/Sqrt(2))*Tanh(Pi(R)/Sqrt(2)))/(1+Cot(Pi(R)/Sqrt(2))*Tanh(Pi(R)/Sqrt(2)))); // G. C. Greubel, Feb 01 2019
    
  • Mathematica
    t = Cot[Pi Sqrt[2]/2] Tanh[Pi Sqrt[2]/2]; s = ArcCot[(1 + t)/(1 - t)]; RealDigits[N[s, 102]] (* Artur Jasinski, Sep 25 2008 *)
  • PARI
    default(realprecision, 100); {t = cotan(Pi/sqrt(2))*tanh(Pi/sqrt(2))}; atan((1-t)/(1+t)) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    t = cot(pi/sqrt(2))*tanh(pi/sqrt(2)); numerical_approx(atan((1-t)/(1+t)), digits=100) # G. C. Greubel, Feb 01 2019

Formula

Decimal expansion of transcendental number arccot((1 + t)/(1 - t)) where t=cot(Pi*sqrt(2)/2) tanh(Pi*sqrt(2)/2). - Artur Jasinski, Sep 25 2008
Equals Sum_{k>=1} (-1)^(k+1)*zeta(4*k-2)/(2*k-1). - Amiram Eldar, Mar 25 2021