A091046 Stirling transform of first differences of Bell numbers (A005493), if offset zero: a(n) = Sum_{k=1..n} A008277(n,k)*A005493(k).
1, 4, 20, 119, 817, 6338, 54707, 519184, 5366097, 59934937, 718748131, 9203953921, 125268224954, 1804750726306, 27426230051634, 438260834123607, 7343677070172330, 128716143768613600, 2354633702684629141, 44865189679858465163, 888784065003104357924
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..478
Programs
-
Maple
s:= proc(n) option remember; expand(`if`(n=0, 1, x*add(s(n-j)*binomial(n-1, j-1), j=1..n))) end: S:= proc(n, k) option remember; coeff(s(n), x, k) end: b:= proc(n, k) option remember; `if`(k=0, n, add(S(n, j)*b(j, k-1), j=0..n)) end: a:= n-> b(n, 2): seq(a(n), n=1..23); # Alois P. Heinz, Aug 24 2021
-
Mathematica
len = 23; Array[StirlingS2, {len, len}].Differences[Array[BellB, len+1]] (* Jean-François Alcover, Apr 25 2022 *)
Formula
E.g.f.: (exp(exp(x)-1)-1)*exp(exp(exp(x)-1)-1).
Representation as an infinite sum (Dobinski-type relation): a(n) = exp(exp(-1)-1)*Sum(p^n*((Sum((Stirling2(p+1, k) - Stirling2(p, k))*exp(-k), k=1..p) + exp(-(p+1)))/p!), p>=1), n = 1, 2, ....
Comments