A091072 Positive numbers k such that the Kronecker Symbol (-1 / k) > 0.
1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 21, 25, 26, 29, 32, 33, 34, 36, 37, 40, 41, 42, 45, 49, 50, 52, 53, 57, 58, 61, 64, 65, 66, 68, 69, 72, 73, 74, 77, 80, 81, 82, 84, 85, 89, 90, 93, 97, 98, 100, 101, 104, 105, 106, 109, 113, 114, 116, 117, 121, 122, 125, 128, 129
Offset: 1
Examples
x + 2*x^2 + 4*x^3 + 5*x^4 + 8*x^5 + 9*x^6 + 10*x^7 + 13*x^8 + 16*x^9 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J.-P. Allouche, G.-N. Han and J. Shallit, On some conjectures of P. Barry, arXiv:2006.08909 [math.NT], 2020.
- Paul Barry, Some observations on the Rueppel sequence and associated Hankel determinants, arXiv:2005.04066 [math.CO], 2020.
- Kevin Ryde, Iterations of the Dragon Curve, see index TurnLeft, with a(n) = TurnLeft(n-1).
- J. E. S. Socolar and J. M. Taylor, An aperiodic hexagonal tile, arXiv:1003.4279 [math.CO], 2010.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a091072 n = a091072_list !! (n-1) a091072_list = map (+ 1) $ elemIndices 0 a014707_list -- Reinhard Zumkeller, Sep 28 2011
-
Maple
KS := (n, k) -> NumberTheory:-KroneckerSymbol(n, k): aList := upto -> select(n -> 0 < KS(-1, n), [seq(1..upto)]): aList(129); # Peter Luschny, Mar 20 2025
-
Mathematica
Select[ Range[129], EvenQ[ (#/2^IntegerExponent[#, 2] - 1)/2 ] & ] (* Jean-François Alcover, Feb 16 2012, after Pari *)
-
PARI
for(n=1,200,if(((n/2^valuation(n,2)-1)/2)%2==0,print1(n",")))
-
PARI
{a(n) = local(m, c); if( n<1, 0, c=1; m=1; while( c
Michael Somos, Sep 24 2005 */ -
PARI
a(n) = if(n=2*n-2, my(t=1); forstep(i=logint(n,2),0,-1, if(bittest(n,i)==t, n--;t=!t))); n+1; \\ Kevin Ryde, Mar 21 2021
-
PARI
isok(k) = kronecker(-1, k) > 0; \\ Michel Marcus, Mar 20 2025
Formula
A014707(a(n) + 1) = 0. - Reinhard Zumkeller, Sep 28 2011
A055975(a(n)) > 0. - Reinhard Zumkeller, Apr 28 2012
Extensions
New name from Peter Luschny, Mar 20 2025
Comments