cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030274 Numerators of sequence {b(1), b(2), ...} which when COMPOSED with itself gives {1,2,3,...}.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 3, -29, 25, 263, -1481, -5493, 80505, 41549, -10584341, 14534299, 431101045, -1767586509, -43076199745, 322525095431, 1295531336537, -30908646610497, -734222129667169, 13259294064756895, 59705027567272273, -1617292893727823431, -1346735121534484263
Offset: 1

Views

Author

Keywords

Examples

			1, 1, 1/2, 1/4, 1/8, 0, 1/16, 3/64, -29/128, 25/128, 263/256, -1481/512, -5493/1024, 80505/2048, ... = A030274/A030275
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] := t[n, m] = If[ n == m , 1 , 1/2*(Binomial[n+m-1, 2*m-1] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}])]; a[n_] := t[n, 1] // Numerator; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
  • Maxima
    T(n, m):=if n=m then 1 else 1/2*(binomial(n+m-1, 2*m-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));
    makelist(num(T(n, 1)), n, 1, 10); /* Vladimir Kruchinin, Mar 14 2012 */

Formula

a(n) = numerator(T(n,1)), T(n,m) = (1/2)*(binomial(n+m-1,2*m-1) - sum(i=m+1..n-1, T(n,i)*T(i,m))), n > m, T(n,n)=1. - Vladimir Kruchinin, Mar 14 2012

Extensions

More terms from Vladeta Jovovic, Dec 19 2003

A030275 Denominators of sequence {b(1), b(2),...} which when COMPOSED with itself gives {1,2,3,...}.

Original entry on oeis.org

1, 1, 2, 4, 8, 1, 16, 64, 128, 128, 256, 512, 1024, 2048, 2048, 16384, 32768, 32768, 65536, 131072, 262144, 131072, 524288, 2097152, 4194304, 4194304, 8388608, 2097152, 16777216, 134217728, 67108864, 1073741824, 2147483648, 2147483648, 4294967296, 8589934592
Offset: 1

Views

Author

Keywords

Examples

			[ 1, 1, 1/2, 1/4, 1/8, 0, 1/16, 3/64, -29/128, 25/128, 263/256, -1481/512, -5493/1024, 80505/2048 ]
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Dec 19 2003
Showing 1-2 of 2 results.