cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A309509 G.f. satisfies A(A(x)) = F(x), where F(x) is the g.f. for A001787(n) = n*2^(n-1).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 0, 4, 6, -58, 100, 1052, -5924, -21972, 322020, 332392, -21168682, 29068598, 1724404180, -7070346036, -172304798980, 1290100381724, 20728501384592, -247269172883976, -2936888518668676, 53037176259027580, 477640220538178184
Offset: 0

Views

Author

Vladimir Reshetnikov, Aug 05 2019

Keywords

Comments

A(x) is sometimes called a functional square root, or half-iterate of F(x).

Crossrefs

Programs

  • Mathematica
    half[q_] := half[q] = Module[{h}, h[0] = 0; h[1] = 1; h[n_Integer] := h[n] = Module[{c}, c[m_Integer /; m < n] := h[m]; c[n] /. Solve[q[n] == Sum[k! c[k] BellY[n, k, Table[m! c[m], {m, n - k + 1}]], {k, n}]/n!, c[n]][[1]]]; h]; a[n_Integer] := a[n] = half[Function[k, k 2^(k-1)]][n]; Table[a[n], {n, 0, 26}]

Formula

Define the sequence b(n,k) as follows. If nSeiichi Manyama, May 03 2024

A030275 Denominators of sequence {b(1), b(2),...} which when COMPOSED with itself gives {1,2,3,...}.

Original entry on oeis.org

1, 1, 2, 4, 8, 1, 16, 64, 128, 128, 256, 512, 1024, 2048, 2048, 16384, 32768, 32768, 65536, 131072, 262144, 131072, 524288, 2097152, 4194304, 4194304, 8388608, 2097152, 16777216, 134217728, 67108864, 1073741824, 2147483648, 2147483648, 4294967296, 8589934592
Offset: 1

Views

Author

Keywords

Examples

			[ 1, 1, 1/2, 1/4, 1/8, 0, 1/16, 3/64, -29/128, 25/128, 263/256, -1481/512, -5493/1024, 80505/2048 ]
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Dec 19 2003

A091138 E.g.f. A(x) satisfies A(A(x)) = x/(1-x)^2.

Original entry on oeis.org

1, 2, 3, 6, 15, 0, 315, 1890, -82215, 708750, 41008275, -1385549550, -33403344975, 3426898600125, 26529571443375, -13516476003780750, 157765729690193625, 84230651703487038750, -3280917943856839411125, -799561865724400084556250, 62859004972802312944044375
Offset: 1

Views

Author

Vladeta Jovovic, Dec 20 2003

Keywords

Comments

First non-integer term is a(30) = 16103946844555056574100466078211185438823359375/2.

Programs

  • Mathematica
    t[n_, m_] := t[n, m] = If[n == m, 1, 1/2*(Binomial[n+m-1, 2*m-1] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}])]; a[n_] := n!*t[n, 1]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if n=m then 1 else 1/2*(binomial(n+m-1,2*m-1)-sum(T(n,i)*T(i,m),i,m+1,n-1));
    makelist(2^(n-1)*T(n,1),n,1,10); /* Vladimir Kruchinin, Mar 14 2012 */

Formula

a(n) = n!* A030274(n)/A030275(n).
a(n) = n!*T(n,1), T(n,m)=1/2*(binomial(n+m-1,2*m-1)-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 14 2012

Extensions

More terms from R. J. Mathar, Apr 28 2007

A334283 Numerators of power series coefficients of A(x) satisfying A(A(x)) = x + Sum_{k>=2} prime(k-1) * x^k.

Original entry on oeis.org

1, 1, 1, 3, -3, 11, -47, 291, -361, -327, 2651, 8117, -23761, -920509, 3401813, 48080231, -949833905, -533061737, 47194458351, 9309105461, -5717668358773, 5794759242411, 416358013987311, -3775846647202969, -144292064358491357, 269618719159718919, 14658236743430975341
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 21 2020

Keywords

Examples

			1, 1, 1/2, 3/4, -3/8, 11/8, -47/16, 291/64, -361/128, -327/64, 2651/256, 8117/512, -23761/1024, -920509/2048, ...
		

Crossrefs

Cf. A008578, A030274, A030278, A334284 (denominators).
Showing 1-4 of 4 results.