A091159 Number of distinct nets for the n-hypercube.
1, 11, 261, 9694, 502110, 33064966, 2642657228, 248639631948, 26941775019280, 3306075027570423, 453373928307505005, 68734915059053558299, 11418459384326497964902, 2062999819948725194529075, 402798929430911987111828116, 84526877217018050866911342594, 18973553064409449260472376235331
Offset: 2
Keywords
References
- Peter Turney, Unfolding the Tesseract, Journal of Recreational Mathematics, Vol. 17(1), 1984-85.
Links
- Jarrod G. Sage, Table of n, a(n) for n = 2..100 (calculated by Alex Gunning)
- Moritz Firsching, Number of hypercube unfoldings
- Alex Gunning, Calculating the number of nets of hypercubes
- Dusko Letic, Nenad Cakic, Branko Davidovic, Ivana Berkovic and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, 2011, 2011:60.
- Mark McClure, 3D models of the unfoldings of the hypercube
- Matt Parker, How many 3D nets does a 4D hypercube have?, Stand-up Maths video (2021).
- Peter D. Turney, Unfolding the Tesseract
- Eric Weisstein's World of Mathematics, Hypercube
Extensions
Offset corrected by Andrey Zabolotskiy, Dec 20 2017
a(5)-a(8) from Moritz Firsching, Mar 16 2021
a(9)-a(10) from Moritz Firsching and Luca Versari, May 14 2021
a(11) and beyond from Jarrod G. Sage (calculated by Alex Gunning), Jul 09 2025