cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091190 G.f. A(x) satisfies x*A(x)^3 = B(x*A(x^3)) where B(x) = x/(1 - 3*x).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 97, 273, 778, 2240, 6499, 18976, 55703, 164243, 486130, 1443620, 4299365, 12836825, 38413933, 115184282, 346005073, 1041072108, 3137060983, 9465689545, 28596915843, 86492865522, 261876842801, 793661873276
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2004

Keywords

Comments

More generally, given A(x) satisfies x*A(x)^p = B(x*A(x^p)) where B(x) = x/(1-p*x), then it appears that A(x) is an integer series only when p is prime. This is a special case of sequences with g.f.s that satisfy the more general functional equation x*A(x)^m = B(x*A(x^m)) studied by Michael Somos; some other examples are A085748, A091188 and A091200.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + 273*x^7 + 778*x^8 + 2240*x^9 + 6499*x^10 + 18976*x^11 + 55703*x^12 + ...
where A(x)^3 = A(x^3) / (1 - 3*x*A(x^3)).
RELATED SERIES.
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 87*x^4 + 270*x^5 + 839*x^6 + 2607*x^7 + 8100*x^8 + 25169*x^9 + 78207*x^10 + 243009*x^11 + 755095*x^12 + ...
Also, D(x) = x*A(D(x)) is the g.f. of A370441, which begins
D(x) = x + x^2 + 3*x^3 + 12*x^4 + 54*x^5 + 261*x^6 + 1324*x^7 + 6952*x^8 + 37461*x^9 + ... + A370441(n)*x^n + ...
such that D(x)^3 = D( x^3 + 3*D(x)^4 ).
		

Crossrefs

Programs

  • Mathematica
    m = 28; B[x_] = x/(1 - 3 x); A[_] = 1;
    Do[A[x_] = (B[x A[x^3]]/x)^(1/3) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 29 2019 *)
  • PARI
    {a(n) = my(A,p=3,m=1); if(n<0,0, m=1; A=1+O(x); while(m<=n, m*=p; A = x*subst(A,x,x^p); A = (A/(1-p*A)/x)^(1/p)); polcoeff(A,n))}
    for(n=0,30, print1(a(n),", "))

Formula

From Paul D. Hanna, Mar 09 2024: (Start)
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A(x^3) / (1 - 3*x*A(x^3)).
(2) A(x) = x/Series_Reversion(D(x)) where D(x) = x*A(D(x)) is the g.f. of A370441.
(End)

Extensions

Corrected by T. D. Noe, Oct 25 2006