A361763
Expansion of g.f. A(x) satisfying A(x)^3 = A( x^3/(1 - 3*x)^3 ).
Original entry on oeis.org
1, 3, 9, 28, 93, 333, 1271, 5064, 20673, 85460, 355659, 1486719, 6238608, 26278281, 111114558, 471608944, 2008906581, 8586410085, 36816550550, 158332335279, 682843960665, 2952865525730, 12802463157570, 55646477022330, 242465061290160, 1059022767175173, 4636452916770489
Offset: 1
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 28*x^4 + 93*x^5 + 333*x^6 + 1271*x^7 + 5064*x^8 + 20673*x^9 + 85460*x^10 + 355659*x^11 + 1486719*x^12 + ...
where
A( x^3/(1 - 3*x)^3 ) = x^3 + 9*x^4 + 54*x^5 + 273*x^6 + 1269*x^7 + 5670*x^8 + 24957*x^9 + 109593*x^10 + 482598*x^11 + 2133082*x^12 + ...
which equals A(x)^3.
RELATED SERIES.
Notice that the following cube root is an integer series
( A(x)/x )^(1/3) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 197*x^6 + 779*x^7 + 3135*x^8 + 12709*x^9 + 51757*x^10 + ... + A361762(n)*x^n + ...
Also, let B(x) satisfy A(x/B(x)) = x and B(A(x)) = A(x)/x,
then B(x) = x/Series_Reversion(A(x)) is the g.f. of A107092,
B(x) = 1 + 3*x + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18 + 55*x^21 - 142*x^24 + 376*x^27 - 1011*x^30 + ...
such that B(x)^3 = B(x^3) + 3*x,
as shown by the series
B(x)^(1/3) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 22*x^6 + 55*x^7 - 142*x^8 + 376*x^9 - 1011*x^10 + ...
SPECIFIC VALUES.
A(1/5) = A(1/8)^(1/3) = 0.586384210523490911367880492498...
A(1/5) = (1/5) * (1 - 3/5)^(-1) * (1 - 3/8)^(-1/3) * (1 - 3/125)^(-1/9) * (1 - 3/1815848)^(-1/27) * ...
A(1/6) = A(1/27)^(1/3) = 0.346688997573685318336777346240...
A(1/6) = (1/6) * (1 - 3/6)^(-1) * (1 - 3/27)^(-1/3) * (1 - 3/13824)^(-1/9) * (1 - 3/2640087986661)^(-1/27) * ...
A(1/9) = A(1/216)^(1/3) = 0.16744549995321182031691216552466...
A(1/12) = A(1/729)^(1/3) = 0.11126394649161862248626102306202...
-
{a(n) = my(A=x); for(i=1, #binary(n+1), A = ( subst(A, x, x^3/(1 - 3*x +x*O(x^n))^3 ) )^(1/3) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A091200
G.f. A(x) satisfies xA(x)^5 = B(xA(x^5)) where B(x) = x/(1-5x).
Original entry on oeis.org
1, 1, 3, 11, 44, 185, 802, 3553, 15994, 72886, 335387, 1555487, 7261310, 34083382, 160730900, 761039051, 3616102911, 17235223345, 82372594183, 394648349447, 1894921311499, 9116598414141, 43939539520427, 212124129983285
Offset: 0
-
{a(n)=local(A,m); p=5;if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=p; A=x*subst(A,x,x^p); A=(A/(1-p*A)/x)^(1/p));polcoeff(A,n))}
A091188
G.f. A(x) satisfies both A(-x)*A(x) = A(x^2) and xA(x)^2 = B(xA(x^2)) where B(x) = x*(1+x)/(1-x).
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 5, 10, 12, 23, 31, 58, 79, 145, 207, 374, 540, 964, 1427, 2522, 3775, 6626, 10050, 17532, 26811, 46561, 71795, 124188, 192661, 332228, 518303, 891340, 1396902, 2396912, 3771822, 6459202, 10199912, 17437727, 27622807, 47152952
Offset: 0
1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 10*x^7 + 12*x^8 + 23*x^9 + ...
q + q^3 + q^5 + 2*q^7 + 2*q^9 + 4*q^11 + 5*q^13 + 10*q^15 + 12*q^17 + ...
-
{a(n) = local(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = x * subst(A, x, x^2); A = (A *(1 + A) /(1 - A) / x)^(1/2)); polcoeff(A, n))}
A370441
Expansion of g.f. A(x) satisfying A(x) = A( x^3 + 3*A(x)^4 )^(1/3), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 1, 3, 12, 54, 261, 1324, 6952, 37461, 205977, 1151034, 6518085, 37321748, 215714904, 1256889150, 7374790400, 43537323406, 258417908640, 1541250594499, 9231988699115, 55514033703450, 334993491267955, 2027954403410504, 12312557796833622, 74955173794196890, 457431093085335708
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 54*x^5 + 261*x^6 + 1324*x^7 + 6952*x^8 + 37461*x^9 + 205977*x^10 + 1151034*x^11 + 6518085*x^12 + ...
where A(x)^3 = A( x^3 + 3*A(x)^4 ).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 55*x^6 + 270*x^7 + 1386*x^8 + 7347*x^9 + 39897*x^10 + 220779*x^11 + 1240392*x^12 + ...
A(x)^4 = x^4 + 4*x^5 + 18*x^6 + 88*x^7 + 451*x^8 + 2388*x^9 + 12958*x^10 + 71668*x^11 + 402489*x^12 + ...
Let B(x) denote the series reversion of A(x), A(B(x)) = x, where
B(x) = x - x^2 - x^3 - 2*x^4 - 4*x^5 - 9*x^6 - 22*x^7 - 55*x^8 - 142*x^9 - 376*x^10 - 1011*x^11 - 2758*x^12 + ... + (-1)^(n+1)*A107092(n)*x^n + ...
then B(x)^3 = B(x^3) - 3*x^4, where
B(x)^3 = x^3 - 3*x^4 - x^6 - x^9 - 2*x^12 - 4*x^15 - 9*x^18 - 22*x^21 - 55*x^24 - 142*x^27 - 376*x^30 - 1011*x^33 - 2758*x^36 + ...
Also, we have D(x) = x/B(x) is the g.f. of A091190, which begins
D(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + 273*x^7 + 778*x^8 + 2240*x^9 + 6499*x^10 + 18976*x^11 + ... + A091190(n)*x^n + ...
such that D(x)^3 = D(x^3)/(1 - 3*x*D(x^3)).
-
{a(n) = my(A=[1],G); for(i=1,n, G = x*Ser(A); A = Vec((subst(G,x, x^3 + 3*x^2*G^2) + x^4*O(x^#A))^(1/3)); );A[n+1]}
for(n=0,40, print1(a(n),", "))
Showing 1-4 of 4 results.
Comments