cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091190 G.f. A(x) satisfies x*A(x)^3 = B(x*A(x^3)) where B(x) = x/(1 - 3*x).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 97, 273, 778, 2240, 6499, 18976, 55703, 164243, 486130, 1443620, 4299365, 12836825, 38413933, 115184282, 346005073, 1041072108, 3137060983, 9465689545, 28596915843, 86492865522, 261876842801, 793661873276
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2004

Keywords

Comments

More generally, given A(x) satisfies x*A(x)^p = B(x*A(x^p)) where B(x) = x/(1-p*x), then it appears that A(x) is an integer series only when p is prime. This is a special case of sequences with g.f.s that satisfy the more general functional equation x*A(x)^m = B(x*A(x^m)) studied by Michael Somos; some other examples are A085748, A091188 and A091200.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + 273*x^7 + 778*x^8 + 2240*x^9 + 6499*x^10 + 18976*x^11 + 55703*x^12 + ...
where A(x)^3 = A(x^3) / (1 - 3*x*A(x^3)).
RELATED SERIES.
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 87*x^4 + 270*x^5 + 839*x^6 + 2607*x^7 + 8100*x^8 + 25169*x^9 + 78207*x^10 + 243009*x^11 + 755095*x^12 + ...
Also, D(x) = x*A(D(x)) is the g.f. of A370441, which begins
D(x) = x + x^2 + 3*x^3 + 12*x^4 + 54*x^5 + 261*x^6 + 1324*x^7 + 6952*x^8 + 37461*x^9 + ... + A370441(n)*x^n + ...
such that D(x)^3 = D( x^3 + 3*D(x)^4 ).
		

Crossrefs

Programs

  • Mathematica
    m = 28; B[x_] = x/(1 - 3 x); A[_] = 1;
    Do[A[x_] = (B[x A[x^3]]/x)^(1/3) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 29 2019 *)
  • PARI
    {a(n) = my(A,p=3,m=1); if(n<0,0, m=1; A=1+O(x); while(m<=n, m*=p; A = x*subst(A,x,x^p); A = (A/(1-p*A)/x)^(1/p)); polcoeff(A,n))}
    for(n=0,30, print1(a(n),", "))

Formula

From Paul D. Hanna, Mar 09 2024: (Start)
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A(x^3) / (1 - 3*x*A(x^3)).
(2) A(x) = x/Series_Reversion(D(x)) where D(x) = x*A(D(x)) is the g.f. of A370441.
(End)

Extensions

Corrected by T. D. Noe, Oct 25 2006

A091188 G.f. A(x) satisfies both A(-x)*A(x) = A(x^2) and xA(x)^2 = B(xA(x^2)) where B(x) = x*(1+x)/(1-x).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 10, 12, 23, 31, 58, 79, 145, 207, 374, 540, 964, 1427, 2522, 3775, 6626, 10050, 17532, 26811, 46561, 71795, 124188, 192661, 332228, 518303, 891340, 1396902, 2396912, 3771822, 6459202, 10199912, 17437727, 27622807, 47152952
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2004

Keywords

Comments

This is a special case of sequences with g.f.s that satisfy the more general functional equation xA(x)^m = B(xA(x^m)) originated by Michael Somos; some other examples are A085748, A091190 and A091200.

Examples

			1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 10*x^7 + 12*x^8 + 23*x^9 + ...
q + q^3 + q^5 + 2*q^7 + 2*q^9 + 4*q^11 + 5*q^13 + 10*q^15 + 12*q^17 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = x * subst(A, x, x^2); A = (A *(1 + A) /(1 - A) / x)^(1/2)); polcoeff(A, n))}

Formula

Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2)) were f(u, v) = u^2 * (1 - v) - v * (1 + v). - Michael Somos, Aug 02 2011

A361764 Expansion of g.f. A(x) satisfying A(x)^5 = A( x^5/(1 - 5*x)^5 ) / (1 - 5*x).

Original entry on oeis.org

1, 1, 3, 11, 44, 185, 806, 3627, 16926, 82615, 425633, 2325804, 13438568, 81258283, 507109592, 3223435416, 20655599675, 132496854084, 847152571284, 5386490329194, 34026141582719, 213512516149309, 1331393810596499, 8255968489237781, 50955585198416275, 313329163267012645
Offset: 0

Views

Author

Paul D. Hanna, Mar 24 2023

Keywords

Comments

Related Catalan identity: C(x)^2 = C( x^2/(1 - 2*x)^2 ) / (1 - 2*x), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Radius of convergence of g.f. A(x) is r where r is the real root of r = (1 - 5*r)^(5/4) with A(r) = 1/r^(1/5) = 1.451902871451714... so that A(r)^5 = A(r)/(1 - 5*r) and r = 0.1549930338264677513709380922535...

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 44*x^4 + 185*x^5 + 806*x^6 + 3627*x^7 + 16926*x^8 + 82615*x^9 + 425633*x^10 + ...
such that A(x)^5 = A( x^5/(1 - 5*x)^5 ) / (1 - 5*x).
RELATED SERIES.
A(x)^5 = 1 + 5*x + 25*x^2 + 125*x^3 + 625*x^4 + 3126*x^5 + 15655*x^6 + 78650*x^7 + 397625*x^8 + 2031875*x^9 + 10553128*x^10 + ...
A( x^5/(1 - 5*x)^5 ) = 1 + x^5 + 25*x^6 + 375*x^7 + 4375*x^8 + 43750*x^9 + 393753*x^10 + 3281400*x^11 + 25785375*x^12 + ...
SPECIFIC VALUES.
A(1/7) = ( 7/2 * A(1/32) )^(1/5) = 1.293495906485927953020670787280...
A(1/7) = (1 - 5/7)^(-1/5) * (1 - 5/32)^(-1/25) * (1 - 5/14348907)^(-1/125) * (1 - 5/14348902^5)^(-1/625) * ...
A(1/8) = ( 8/3 * A(1/243) )^(1/5) = 1.21774097368643014934892826038499995...
A(1/8) = (1 - 5/8)^(-1/5) * (1 - 5/243)^(-1/25) * (1 - 5/763633171168)^(-1/125) * (1 - 5/763633171163^5)^(-1/625) * ...
A(1/10) = ( 2 * A(1/3125) )^(1/5) = 1.14877193292427434012390599513357372...
A(1/10) = (1 - 5/10)^(-1/5) * (1 - 5/3125)^(-1/25) * (1 - 5/295646655283200000)^(-1/125) * (1 - 5/295646655283199995^5)^(-1/625) * ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1, #binary(n+1), A = ( subst(A, x, x^5/(1 - 5*x +x*O(x^n))^5 )/(1 - 5*x +x*O(x^n)) )^(1/5) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x)^5 = A( x^5/(1 - 5*x)^5 ) / (1 - 5*x).
(2) A(x^5) = A( x/(1 + 5*x) )^5 / (1 + 5*x).
(3) A(x) = Product_{n>=1} 1/(1 - 5/F(n,x))^(1/5^n), where F(1,x) = 1/x, F(m,x) = (F(m-1,x) - 5)^5 for m > 1.

A370545 Expansion of g.f. A(x) satisfying A(x) = A( x^5 + 5*A(x)^6 )^(1/5).

Original entry on oeis.org

1, 1, 4, 21, 125, 801, 5388, 37518, 268109, 1955000, 14487754, 108794169, 826054062, 6331064385, 48914088750, 380555960864, 2978892961194, 23444095375593, 185394136871818, 1472396312841250, 11739089289817538, 93921736129064325, 753845680317416682, 6068255413854119432
Offset: 1

Views

Author

Paul D. Hanna, Mar 26 2024

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 21*x^4 + 125*x^5 + 801*x^6 + 5388*x^7 + 37518*x^8 + 268109*x^9 + 1955000*x^10 + 14487754*x^11 + 108794169*x^12 + ...
where A(x)^5 = A( x^5 + 5*A(x)^6 ).
RELATED SERIES.
A(x)^5 = x^5 + 5*x^6 + 30*x^7 + 195*x^8 + 1330*x^9 + 9376*x^10 + 67720*x^11 + ...
A(x)^6 = x^6 + 6*x^7 + 39*x^8 + 266*x^9 + 1875*x^10 + 13542*x^11 + 99654*x^12 + ...
Let B(x) be the series reversion of A(x), A(B(x)) = x, which begins
B(x) = x - x^2 - 2*x^3 - 6*x^4 - 21*x^5 - 80*x^6 - 320*x^7 - 1326*x^8 - 5637*x^9 - 24434*x^10 - ... + (-1)^(n-1)*A352703(n-1)*x^n + ...
then B(x)^5 + 5*x^6 = B(x^5).
Let C(x) = x^2/B(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 185*x^6 + 802*x^7 + 3553*x^8 + 15994*x^9 + 72886*x^10 + ... + A091200(n-1)*x^n + ...
where A(x^2/C(x)) = x and C(A(x)) = A(x)^2/x,
then C(x)^5 = C(x^5)/(1 - 5*C(x^5)/x^4).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2); for(m=1, n, A=truncate(A); A = subst(A, x, x^5 + 5*A^6 +x^5*O(x^m))^(1/5) ); polcoeff(A, n)}
    for(n=1, 40, print1(a(n), ", "))
Showing 1-4 of 4 results.