A091323 Minimum number of transversals in a Latin square of order 2n+1.
1, 3, 3, 3, 68
Offset: 0
References
- H. J. Ryser, Neuere Probleme der Kombinatorik. Vortraege ueber Kombinatorik, Oberwolfach, 1967, Mathematisches Forschungsinstitut Oberwolfach, pp. 69-91.
Links
- B. D. McKay, J. C. McLeod and I. M. Wanless, The number of transversals in a Latin square, Des. Codes Cryptogr., 40, (2006) 269-284.
- V. N. Potapov, On the number of transversals in Latin squares, arxiv:1506.01577 [math.CO], 2015.
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
Extensions
a(4) from Brendan McKay and Ian Wanless, May 23 2004
Comments