A091338 a(n) = (3/n), where (k/n) is the Kronecker symbol.
1, -1, 0, 1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, -1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, 0
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jean-Paul Allouche, Leo Goldmakher, Mock characters and the Kronecker symbol, arXiv:1608.03957 [math.NT], 2016.
- Eric Weisstein's World of Mathematics, Kronecker Symbol
Programs
-
Magma
[KroneckerSymbol(3,n): n in [1..100]]; // Vincenzo Librandi, Aug 16 2016
-
Maple
A091338 := proc(n) numtheory[jacobi](3,n) ; end proc: # R. J. Mathar, Nov 03 2011
-
Mathematica
Table[KroneckerSymbol[3, n], {n, 1, 100}] (* Vincenzo Librandi, Aug 16 2016 *)
-
PARI
a(n)=kronecker(3,n)
Formula
If n==0 (mod 3) a(n)=0; for p ==1 or 11 (mod 12) (i.e., p>3 in A038874), a(p)=+1; for p==2, 5 or 7 (mod 12) (i.e., p in A038875), a(p)=-1. - Benoit Cloitre, Jan 03 2004
From A.H.M. Smeets, Aug 01 2018: (Start)
Conjecture:
a(n) = 0 if and only if (n mod 3 = 0),
a(n) = 1 if (n mod 12 = 1 or n mod 12 = 11 or n mod 48 = 4 or n mod 48 = 44),
a(n) = -1 if (n mod 12 = 5 or n mod 12 = 7 or n mod 48 = 20 or n mod 48 = 28),
a(2) = -1, a(12*n+10) = -a(12*n+2) and a(12*n+14) = a(12*n+10) for n >= 0,
a(24*n+8) = -a(12*n+4) and a(24*n+16) = -a(12*n+4) for n >= 0. (End)
From A.H.M. Smeets, Aug 01 2018: (Start)
a(2*n+1) = 1 if and only if (n mod 6 = 0 or n mod 6 = 5),
a(2*n+1) = -1 if and only if (n mod 6 = 2 or n mod 6 = 3),
a(2*n+1) = 0 if and only if n mod 3 = 1,
a(2*n) = -a(n). (End)
Extensions
More terms from Benoit Cloitre, Jan 03 2004
Comments