cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091474 Decimal expansion of Pi^2 * (2-sqrt(2))/32.

Original entry on oeis.org

1, 8, 0, 6, 7, 1, 2, 6, 2, 5, 9, 0, 6, 5, 4, 9, 4, 2, 7, 9, 2, 3, 0, 8, 1, 2, 8, 9, 8, 1, 6, 7, 1, 6, 1, 5, 3, 3, 7, 1, 1, 4, 5, 7, 1, 0, 1, 8, 2, 9, 6, 7, 6, 6, 2, 6, 6, 2, 4, 0, 7, 9, 4, 2, 9, 3, 7, 5, 8, 5, 6, 6, 2, 2, 4, 1, 3, 3, 0, 0, 1, 7, 7, 0, 8, 9, 8, 2, 5, 4, 1, 5, 0, 4, 8, 3, 7, 9, 9, 7, 0, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jan 13 2004

Keywords

Examples

			0.18067126259065494279230812898167161533711457101829...
		

Crossrefs

Cf. A047621.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)^2*(2-Sqrt(2))/32; // G. C. Greubel, Oct 01 2018
  • Mathematica
    RealDigits[Pi^2 (2-Sqrt[2])/32,10,120][[1]] (* Harvey P. Dale, Nov 18 2013 *)
  • PARI
    default(realprecision, 100); Pi^2*(2-sqrt(2))/32 \\ G. C. Greubel, Oct 01 2018
    

Formula

Equals Integral_{t=0..1} t^2 * log(t)/((t^2 - 1)*(t^4 + 1)) dt.
Equals Sum_{k>=1} 1/A047621(k)^2. - Amiram Eldar, Apr 17 2022