cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091485 Number of labeled 2,3 cacti (triangular cacti with bridges).

Original entry on oeis.org

1, 1, 4, 28, 290, 3996, 68992, 1434112, 34895772, 973450000, 30636233936, 1074020373504, 41510792057176, 1753764940408768, 80412829785000000, 3977094146761424896, 211058327532167398928, 11963018212810373415168, 721321146876339731628352
Offset: 1

Views

Author

Christian G. Bower, Jan 14 2004

Keywords

Comments

As Alois P. Heinz has pointed out, the e.g.f in the Example section does not match the offset. However, the identity a(n) = A091481(n)/n holds with the present offset of 1. - N. J. A. Sloane, Jun 23 2017

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 28*x^3/3! + 290*x^4/4! + 3996*x^5/5! +...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.84).

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x InverseSeries[x/Exp[x+x^2/2]+O[x]^20], x] Range[0, 18]! (* Jean-François Alcover, Aug 06 2018 *)

Formula

a(n) = A091481(n)/n.
From Paul D. Hanna, Jun 01 2012: (Start)
E.g.f.: (1/x)*Series_Reversion( x/exp(x+x^2/2) ).
E.g.f. satisfies: A(x) = exp( x*A(x) + x^2*A(x)^2/2 ).
E.g.f. satisfies: A( x/exp(x+x^2/2) ) = exp(x+x^2/2).
(End)
a(n+1) = n! * Sum_{k=0..n} (1/2)^(n-k) * (n+1)^(k-1) * binomial(k,n-k)/k!. - Seiichi Manyama, Aug 19 2023