cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091520 Expansion of 1 / ((1 - 4*x) * sqrt(1 + 4*x)) in powers of x.

Original entry on oeis.org

1, 2, 14, 36, 214, 604, 3340, 9928, 52582, 161708, 831588, 2620920, 13187836, 42350744, 209519576, 682960784, 3332923526, 10998087884, 53067486836, 176924683544, 845545262996, 2843923177544, 13479791673896, 45685735967984
Offset: 0

Views

Author

Michael Somos, Jan 18 2004

Keywords

Examples

			G.f. = 1 + 2*x + 14*x^2 + 36*x^3 + 214*x^4 + 604*x^5 + 3340*x^6 + 9928*x^7 + ...
		

Programs

  • Mathematica
    CoefficientList[Series[1/((1-4x)Sqrt[1+4x]),{x,0,30}],x] (* Harvey P. Dale, Oct 14 2013 *)
    Table[2^n (2n+1)!! Hypergeometric2F1[-n, 1/2, 3/2, 2]/n!, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
    RecurrenceTable[{a[n+1] == 4*a[n] - (-1)^(n)*Binomial[2n+2,n+1], a[0]==1}, a, {n,0, 30}] (* G. C. Greubel, Nov 02 2015 *)
  • PARI
    {a(n) = if( n<0, 0, 4^n * sum( k=0, n, binomial(2*k, k) / (-4)^k))};
    
  • PARI
    my(x='x+O('x^50)); Vec(1/((1-4*x)*sqrt(1+4*x))) \\ Altug Alkan, Nov 02 2015

Formula

G.f.: 1 / ((1 - 4*x) * sqrt(1 + 4*x)).
D-finite with recurrence: n*a(n) = 2 * a(n-1) + 8 * (2*n - 1) * a(n-2).
a(n) = 4^n * Sum_{k=0, n} binomial( 2*k, k) / (-4)^k.
a(n) = A003148(n) * 2^n / n!. - Michael Somos, Mar 17 2011
Asymptotics: a(n) ~ 4^n / sqrt(2).
G.f.: y = A(x) satisfies 0 = (16*x^2 - 1) * y' + (24*x + 2) * y and 0 = y'^3 + 8 * y'^2 * y^3 + 216 * y^5 - 256 * y^7.
G.f.: 1/((1-4*x)*sqrt(1+4*x)) = 1/(1-4*x+2*x*(1-4*x)/G(0)) ; G(k) = 1 + x/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 21 2011
From Vladimir Reshetnikov, Nov 01 2015: (Start)
a(n) = 2^(n-1)*(sqrt(2)*2^n + (-1)^n*(2*n+1)!!*hypergeom([1,n+3/2], [n+2], -1)/(n+1)!).
a(n) = 2^n*(2*n+1)!!*hypergeom([-n,1/2], [3/2], 2)/n!. (End)
a(n+1) = 4*a(n) - (-1)^n*binomial(2*n+2,n+1). - G. C. Greubel, Nov 02 2015