A091626 Number of ordered integer pairs (b,c) with 0 <= b, c <= n such that both roots of x^2+bx+c=0 are integers.
1, 2, 4, 6, 9, 11, 14, 16, 19, 22, 25, 27, 31, 33, 36, 39, 43, 45, 49, 51, 55, 58, 61, 63, 68, 71, 74, 77, 81, 83, 88, 90, 94, 97, 100, 103, 109, 111, 114, 117, 122, 124, 129, 131, 135, 139, 142, 144, 150, 153, 157, 160, 164, 166, 171, 174, 179, 182, 185, 187
Offset: 0
Keywords
Examples
The six quadratics for a(3)=6 and their roots are as follows: x^2 + 0*x + 0; x=0. x^2 + 1*x + 0; x=0, x=-1. x^2 + 2*x + 0; x=0, x=-2. x^2 + 2*x + 1; x=-1. x^2 + 3*x + 0; x=0, x=-3. x^2 + 3*x + 2; x=-1, x=-2.
Links
- Griffin N. Macris, Table of n, a(n) for n = 0..9999
- Eric Weisstein's World of Mathematics, Quadratic Equation
Programs
-
Mathematica
a[n_] := a[n] = a[n-1] + Ceiling[ DivisorSigma[0, n]/2] + 1; a[0]=1; a[1]=2; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Nov 08 2012, after Vladeta Jovovic *)
-
PARI
a(n) = sum(i=0, n, sum(j=i, n-i, i*j<=n)); \\ Seiichi Manyama, Sep 04 2021
-
Python
from math import isqrt def A091626(n): m = isqrt(n) return 1 if n == 0 else n+sum(n//k for k in range(1, m+1))-m*(m-1)//2 # Chai Wah Wu, Oct 07 2021
Formula
a(n) = a(n-1) + ceiling(tau(n)/2) + 1, n>1. - Vladeta Jovovic, Jun 12 2004
a(n) = n + floor(sqrt(n))/2 + A006218(n)/2, n>0. - Griffin N. Macris, Jun 14 2016
Comments