A091670 Decimal expansion of Gamma(1/4)^4/(4*Pi^3).
1, 3, 9, 3, 2, 0, 3, 9, 2, 9, 6, 8, 5, 6, 7, 6, 8, 5, 9, 1, 8, 4, 2, 4, 6, 2, 6, 0, 3, 2, 5, 3, 6, 8, 2, 4, 2, 6, 5, 7, 4, 8, 1, 2, 1, 7, 5, 1, 5, 6, 1, 7, 8, 7, 8, 9, 7, 4, 2, 8, 1, 6, 3, 1, 8, 8, 0, 3, 2, 4, 0, 1, 2, 5, 7, 5, 0, 3, 6, 6, 3, 0, 6, 7, 8, 6, 4, 7, 3, 2, 9, 8, 5, 7, 8, 0, 9, 5, 5, 5, 9, 9
Offset: 1
Examples
1.39320392968567685918424626032536824265748121751561787897...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 324.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 256, 6.1.17 , p. 557, 15.1.26.
- M. L. Glasser, I. J. Zucker, Extended Watson integrals for the cubic lattices, Proc. Nat. Acad. Sci., Vol. 74, No. 5 (1977), p. 1800-1801.
- Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), (6.5.1)
- Yu. V. Nesterenko, Modular functions and transcendence questions, Sbornik: Mathematics, Vol. 187, No. 9 (1996), pp. 1319-1348. (English translation)
- Tito Piezas III, Watson's triple integrals.
- Eric Weisstein's World of Mathematics, Watson's Triple Integrals.
- I. J. Zucker, 70+years of the Watson integrals, J. Stat. Phys., Vol. 145, No. 3 (2011), pp. 591-612.
- Index entries for transcendental numbers.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(1/4)^4/(4*Pi(R)^3); // G. C. Greubel, Oct 26 2018
-
Maple
Pi/GAMMA(3/4)^4 ; evalf(%) ; # R. J. Mathar, Jun 17 2016
-
Mathematica
RealDigits[ N[ Gamma[1/4]^4/(4*Pi^3), 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
-
PARI
1/agm(sqrt(1/2),1)^2 \\ Charles R Greathouse IV, Mar 03 2016
Formula
From Joerg Arndt, Nov 27 2010: (Start)
Equals 1/agm(1,sqrt(1/2))^2.
Equals Gamma(1/4)^4 / (4*Pi^3) = Pi / (Gamma(3/4))^4 = hypergeom([1/2,1/2],[1],1/2)^2, see the two Abramowitz - Stegun references. (End)
Equals hypergeom([1/2,1/2,1/2],[1,1],1) - Wolfdieter Lang, Nov 12 2016
Equals Sum_{k>=0} binomial(2*k,k)^3/2^(6*k). - Amiram Eldar, Aug 26 2020
Comments