A091681 Decimal expansion of BesselJ(0,2).
2, 2, 3, 8, 9, 0, 7, 7, 9, 1, 4, 1, 2, 3, 5, 6, 6, 8, 0, 5, 1, 8, 2, 7, 4, 5, 4, 6, 4, 9, 9, 4, 8, 6, 2, 5, 8, 2, 5, 1, 5, 4, 4, 8, 2, 2, 1, 8, 6, 0, 7, 6, 0, 3, 1, 2, 8, 3, 4, 9, 7, 0, 6, 0, 1, 0, 8, 5, 3, 9, 5, 7, 7, 6, 8, 0, 1, 0, 7, 0, 5, 0, 1, 4, 8, 1, 1, 5, 1, 1, 8, 5, 3, 4, 2, 9, 3, 6, 6, 0, 4, 9
Offset: 0
Examples
0.223890779...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Eric Weisstein's World of Mathematics, Factorial Sums
- Eric Weisstein's World of Mathematics, Pierce Expansion
Crossrefs
Programs
-
Mathematica
RealDigits[N[BesselJ[0, 2], 250]][[1]] (* G. C. Greubel, Dec 26 2016 *)
-
PARI
besselj(0,2) \\ Charles R Greathouse IV, Feb 19 2014
Formula
Equals Sum_{k>=0} (-1)^k/(k!)^2.
Continued fraction expansion: BesselJ(0,2) = 1/(4 + 4/(8 + 9/(15 + ... + (n - 1)^2/(n^2 + 1 + ...)))). See A073701 for a proof. - Peter Bala, Feb 01 2015
Equals BesselI(0,2*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021
Comments