cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091681 Decimal expansion of BesselJ(0,2).

Original entry on oeis.org

2, 2, 3, 8, 9, 0, 7, 7, 9, 1, 4, 1, 2, 3, 5, 6, 6, 8, 0, 5, 1, 8, 2, 7, 4, 5, 4, 6, 4, 9, 9, 4, 8, 6, 2, 5, 8, 2, 5, 1, 5, 4, 4, 8, 2, 2, 1, 8, 6, 0, 7, 6, 0, 3, 1, 2, 8, 3, 4, 9, 7, 0, 6, 0, 1, 0, 8, 5, 3, 9, 5, 7, 7, 6, 8, 0, 1, 0, 7, 0, 5, 0, 1, 4, 8, 1, 1, 5, 1, 1, 8, 5, 3, 4, 2, 9, 3, 6, 6, 0, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 28 2004

Keywords

Comments

The Pierce Expansion of this number is the squares > 1: 4,9,16,25,... - Franklin T. Adams-Watters, May 22 2006

Examples

			0.223890779...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), this sequence (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

Formula

Equals Sum_{k>=0} (-1)^k/(k!)^2.
Continued fraction expansion: BesselJ(0,2) = 1/(4 + 4/(8 + 9/(15 + ... + (n - 1)^2/(n^2 + 1 + ...)))). See A073701 for a proof. - Peter Bala, Feb 01 2015
Equals BesselI(0,2*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021