cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091723 Decimal expansion of the root x of Ei(x)=0, where Ei is the exponential integral.

Original entry on oeis.org

3, 7, 2, 5, 0, 7, 4, 1, 0, 7, 8, 1, 3, 6, 6, 6, 3, 4, 4, 6, 1, 9, 9, 1, 8, 6, 6, 5, 8, 0, 1, 1, 9, 1, 3, 3, 5, 3, 5, 6, 8, 9, 4, 9, 7, 7, 7, 1, 6, 5, 4, 0, 5, 1, 5, 5, 5, 6, 5, 7, 4, 3, 5, 2, 4, 2, 2, 0, 0, 1, 2, 0, 6, 3, 6, 2, 0, 1, 8, 5, 4, 3, 8, 4, 9, 2, 6, 0, 4, 9, 9, 5, 1, 5, 4, 8, 9, 4, 2, 3, 9, 2
Offset: 0

Views

Author

Eric W. Weisstein, Feb 01 2004

Keywords

Examples

			0.372507410781366634461991866580119133535689497771654...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ x /. FindRoot[ ExpIntegralEi[x] == 0, {x, 1}, WorkingPrecision -> 102]][[1]] (* Jean-François Alcover, Oct 29 2012 *)
    RealDigits[x /. FindRoot[LogIntegral[Exp[x]]/x, {x, 1/3}, WorkingPrecision -> 105]][[1]] (* Artur Jasinski, Apr 19 2022 *)
  • PARI
    solve(x=.3,1,real(eint1(-x))) \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals log(A070769). - Amiram Eldar, Aug 14 2020
Equals root x of li(exp(x)/x)=0 where li(x) is the logarithmic integral. - Artur Jasinski, Apr 19 2022