A091723 Decimal expansion of the root x of Ei(x)=0, where Ei is the exponential integral.
3, 7, 2, 5, 0, 7, 4, 1, 0, 7, 8, 1, 3, 6, 6, 6, 3, 4, 4, 6, 1, 9, 9, 1, 8, 6, 6, 5, 8, 0, 1, 1, 9, 1, 3, 3, 5, 3, 5, 6, 8, 9, 4, 9, 7, 7, 7, 1, 6, 5, 4, 0, 5, 1, 5, 5, 5, 6, 5, 7, 4, 3, 5, 2, 4, 2, 2, 0, 0, 1, 2, 0, 6, 3, 6, 2, 0, 1, 8, 5, 4, 3, 8, 4, 9, 2, 6, 0, 4, 9, 9, 5, 1, 5, 4, 8, 9, 4, 2, 3, 9, 2
Offset: 0
Examples
0.372507410781366634461991866580119133535689497771654...
Links
- Robert Price, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Exponential Integral.
- Wikipedia, Exponential integral.
Programs
-
Mathematica
RealDigits[ x /. FindRoot[ ExpIntegralEi[x] == 0, {x, 1}, WorkingPrecision -> 102]][[1]] (* Jean-François Alcover, Oct 29 2012 *) RealDigits[x /. FindRoot[LogIntegral[Exp[x]]/x, {x, 1/3}, WorkingPrecision -> 105]][[1]] (* Artur Jasinski, Apr 19 2022 *)
-
PARI
solve(x=.3,1,real(eint1(-x))) \\ Charles R Greathouse IV, Apr 14 2014
Formula
Equals log(A070769). - Amiram Eldar, Aug 14 2020
Equals root x of li(exp(x)/x)=0 where li(x) is the logarithmic integral. - Artur Jasinski, Apr 19 2022