cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228507 Numbers n such that first n digits of A091723 (Decimal expansion of the root x of ExpIntegralEi[x]==0) gives a prime number.

Original entry on oeis.org

1, 2, 145, 180, 691, 4123
Offset: 1

Views

Author

Robert Price, Aug 23 2013

Keywords

Comments

a(7) > 10^4.

Crossrefs

Cf. A091723.

A070769 Decimal expansion of Soldner's constant.

Original entry on oeis.org

1, 4, 5, 1, 3, 6, 9, 2, 3, 4, 8, 8, 3, 3, 8, 1, 0, 5, 0, 2, 8, 3, 9, 6, 8, 4, 8, 5, 8, 9, 2, 0, 2, 7, 4, 4, 9, 4, 9, 3, 0, 3, 2, 2, 8, 3, 6, 4, 8, 0, 1, 5, 8, 6, 3, 0, 9, 3, 0, 0, 4, 5, 5, 7, 6, 6, 2, 4, 2, 5, 5, 9, 5, 7, 5, 4, 5, 1, 7, 8, 3, 5, 6, 5, 9, 5, 3, 1, 3, 5, 7, 7, 1, 1, 0, 8, 6, 8, 2, 8, 8, 4
Offset: 1

Views

Author

Eric W. Weisstein, May 05 2002

Keywords

Comments

From Amiram Eldar, Aug 14 2020: (Start)
The only positive solution to li(x) = 0, where li is the logarithmic integral.
Named after the German physicist, mathematician and astronomer Johann Georg von Soldner (1776 - 1833).
Also known as Ramanujan-Soldner constant.
Mascheroni (1792) calculated the value 1.45137. Soldner (1809) calculated the value 1.4513692346. (End)

Examples

			1.45136923488338105028396848589...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See p. 425.

Crossrefs

Cf. A091723.

Programs

Formula

Equals exp(A091723). - Amiram Eldar, Aug 14 2020

Extensions

Offset corrected and example added by Stanislav Sykora, May 18 2012

A276709 Decimal expansion of the derivative of logarithmic integral at its positive real root.

Original entry on oeis.org

2, 6, 8, 4, 5, 1, 0, 3, 5, 0, 8, 2, 0, 7, 0, 7, 6, 5, 2, 5, 0, 2, 3, 8, 2, 6, 4, 0, 4, 8, 7, 2, 3, 8, 6, 8, 5, 3, 1, 0, 1, 7, 9, 7, 3, 4, 5, 9, 8, 5, 5, 1, 6, 3, 5, 2, 2, 0, 4, 1, 4, 8, 6, 4, 5, 0, 2, 6, 4, 1, 1, 3, 3, 6, 3, 1, 7, 6, 7, 2, 4, 4, 8, 9, 3, 6, 2, 5, 0, 2, 2, 0, 1, 2, 5, 4, 8, 5, 2, 1, 5, 3, 6, 5, 0
Offset: 1

Views

Author

Stanislav Sykora, Sep 15 2016

Keywords

Comments

Since the real root location of li(x) is the Soldner's constant A070769, this constant equals 1/log(A070769). It is also the inverse of the unique real root A091723 of the exponential integral function Ei(x).

Examples

			2.68451035082070765250238264048723868531017973459855163522041486450...
		

Crossrefs

Programs

  • Mathematica
    1/x/.FindRoot[ExpIntegralEi[x] == 0, {x, 1}, WorkingPrecision -> 104] (* Vaclav Kotesovec, Sep 27 2016 *)
  • PARI
    li(z) = {my(c=z+0.0*I); \\ Computes li(z) for any complex z
    if(imag(c)<0,return(-Pi*I-eint1(-log(c))),return(+Pi*I-eint1(-log(c))));}
    a = 1/log(solve(x=1.1,2.0,real(li(x)))) \\ Computes this constant

Formula

Equals 1/log(A070769) and 1/A091723.

A380270 Decimal expansion of Integral_{x=1..A070769} li(x) dx (negated), where li(x) is the logarithmic integral.

Original entry on oeis.org

5, 0, 0, 1, 0, 2, 3, 3, 6, 2, 7, 0, 1, 7, 0, 6, 0, 6, 4, 1, 1, 9, 5, 8, 3, 7, 3, 3, 8, 1, 9, 2, 6, 8, 1, 2, 7, 8, 0, 1, 7, 7, 7, 2, 5, 2, 0, 1, 4, 6, 9, 6, 1, 7, 7, 8, 2, 8, 6, 4, 0, 4, 4, 9, 3, 8, 0, 9, 6, 7, 1, 4, 7, 3, 0, 3, 0, 9, 2, 3, 8, 7, 2, 9, 5, 3, 0, 7, 1, 1, 1, 6, 5, 2, 0, 6, 8, 2, 9, 8, 9, 1, 4, 9, 1
Offset: 0

Views

Author

Artur Jasinski, Jan 18 2025

Keywords

Comments

A070769 is Soldner's constant, where li(A070769)=0.
Integral_{x=0..1} li(x) dx = -log(2) then Integral_{x=0..A070769} li(x) dx = A380270 - log(2) = -1.19324951683011591582919049...

Examples

			-0.500102336270170606411958373..
		

Crossrefs

Programs

  • Mathematica
    y = x /. FindRoot[LogIntegral[x] == 0, {x, 1.5}, WorkingPrecision -> 200]; yy = -Integrate[LogIntegral[x], {x, 1, y}]; RealDigits[yy, 10, 105][[1]]

A364521 Decimal expansion of the solution to Ei(x) = x.

Original entry on oeis.org

5, 2, 7, 6, 1, 2, 3, 4, 7, 2, 0, 1, 7, 4, 2, 0, 6, 0, 5, 1, 6, 9, 1, 5, 8, 5, 1, 3, 8, 0, 5, 1, 8, 7, 2, 1, 6, 9, 1, 6, 4, 1, 7, 6, 4, 1, 6, 1, 5, 2, 5, 4, 7, 3, 1, 6, 8, 8, 7, 3, 3, 2, 9, 0, 3, 3, 1, 0, 1, 3, 4, 2, 7, 7, 7, 4, 6, 6, 7, 5, 2, 4, 5, 7, 8, 0, 5, 2, 5, 8, 4, 7, 5, 0, 7, 8, 6, 1, 4, 4, 7
Offset: 0

Views

Author

Michal Paulovic, Aug 15 2023

Keywords

Comments

Fixed point of exponential integral.

Examples

			0.5276123472017420...
		

Crossrefs

Programs

  • Maple
    Digits:=101: fsolve(Ei(1,x)-x, x);
  • Mathematica
    RealDigits[FindRoot[ExpIntegralE[1, x] - x, {x, 0.5}, WorkingPrecision -> 101][[1, 2]], 10, 101][[1]]
  • PARI
    default(realprecision, 101); solve(x=0.5,0.6,eint1(x)-x)
    
  • PARI
    solve(x=0.5,0.6,-Euler()-log(x)-suminf(k=1,(-x)^k/(k*k!))-x)
Showing 1-5 of 5 results.