cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A099805 Positions of records for terms in the continued fraction of Soldner's constant (A070769).

Original entry on oeis.org

1, 2, 3, 12, 70, 126, 202, 585, 1592, 2436, 2544, 4814, 9603, 12148, 122447
Offset: 1

Views

Author

Eric W. Weisstein, Oct 26 2004

Keywords

Comments

See A229230 for another version.

Crossrefs

Cf. A229230 (= a(n) - 1), A070769, A099804.

Programs

  • Mathematica
    f = FindRoot[LogIntegral@x, {x, 3/2}, WorkingPrecision -> 2^17][[1, 2]]; cf = ContinuedFraction@f; k = 1; mx = 0; lst = {}; len = Length@ cf; While[k < len, If[ cf[[k]] > mx, mx = cf[[k]]; AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Aug 05 2010 *)

Extensions

a(15) from Robert G. Wilson v, Aug 05 2010
Edited by N. J. A. Sloane, Jun 19 2021 (removed mention of a(0) from definition).

A380270 Decimal expansion of Integral_{x=1..A070769} li(x) dx (negated), where li(x) is the logarithmic integral.

Original entry on oeis.org

5, 0, 0, 1, 0, 2, 3, 3, 6, 2, 7, 0, 1, 7, 0, 6, 0, 6, 4, 1, 1, 9, 5, 8, 3, 7, 3, 3, 8, 1, 9, 2, 6, 8, 1, 2, 7, 8, 0, 1, 7, 7, 7, 2, 5, 2, 0, 1, 4, 6, 9, 6, 1, 7, 7, 8, 2, 8, 6, 4, 0, 4, 4, 9, 3, 8, 0, 9, 6, 7, 1, 4, 7, 3, 0, 3, 0, 9, 2, 3, 8, 7, 2, 9, 5, 3, 0, 7, 1, 1, 1, 6, 5, 2, 0, 6, 8, 2, 9, 8, 9, 1, 4, 9, 1
Offset: 0

Views

Author

Artur Jasinski, Jan 18 2025

Keywords

Comments

A070769 is Soldner's constant, where li(A070769)=0.
Integral_{x=0..1} li(x) dx = -log(2) then Integral_{x=0..A070769} li(x) dx = A380270 - log(2) = -1.19324951683011591582919049...

Examples

			-0.500102336270170606411958373..
		

Crossrefs

Programs

  • Mathematica
    y = x /. FindRoot[LogIntegral[x] == 0, {x, 1.5}, WorkingPrecision -> 200]; yy = -Integrate[LogIntegral[x], {x, 1, y}]; RealDigits[yy, 10, 105][[1]]

A227539 Signature sequence of Soldner's constant (A070769).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 8, 1, 4, 7, 3, 6, 9, 2, 5, 8, 1, 4, 7, 10, 3, 6, 9, 2, 5, 8, 11, 1, 4, 7, 10, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, 10, 13, 3, 6, 9, 12, 2, 5, 8, 11, 14, 1, 4, 7, 10, 13, 3, 6, 9, 12, 15, 2, 5, 8
Offset: 1

Views

Author

Casey Mongoven, Jul 16 2013

Keywords

Comments

Arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x; the sequence of j's is the signature of 1/x.
The plot looks surprisingly regular. - T. D. Noe, Jul 23 2013
Where does this first differ from A133334? - R. J. Mathar, Jul 30 2013

References

  • Clark Kimberling, Fractal Sequences and Interspersions, Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Programs

  • Mathematica
    x = FindRoot[LogIntegral[x] == 0, {x, 2}, WorkingPrecision -> 105][[1,2]]; Take[Transpose[Sort[Flatten[Table[{i + j*x, i}, {i, 30}, {j, 20}], 1], #1[[1]] < #2[[1]] &]][[2]], 100] (* T. D. Noe, Jul 23 2013 *)

A091723 Decimal expansion of the root x of Ei(x)=0, where Ei is the exponential integral.

Original entry on oeis.org

3, 7, 2, 5, 0, 7, 4, 1, 0, 7, 8, 1, 3, 6, 6, 6, 3, 4, 4, 6, 1, 9, 9, 1, 8, 6, 6, 5, 8, 0, 1, 1, 9, 1, 3, 3, 5, 3, 5, 6, 8, 9, 4, 9, 7, 7, 7, 1, 6, 5, 4, 0, 5, 1, 5, 5, 5, 6, 5, 7, 4, 3, 5, 2, 4, 2, 2, 0, 0, 1, 2, 0, 6, 3, 6, 2, 0, 1, 8, 5, 4, 3, 8, 4, 9, 2, 6, 0, 4, 9, 9, 5, 1, 5, 4, 8, 9, 4, 2, 3, 9, 2
Offset: 0

Views

Author

Eric W. Weisstein, Feb 01 2004

Keywords

Examples

			0.372507410781366634461991866580119133535689497771654...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ x /. FindRoot[ ExpIntegralEi[x] == 0, {x, 1}, WorkingPrecision -> 102]][[1]] (* Jean-François Alcover, Oct 29 2012 *)
    RealDigits[x /. FindRoot[LogIntegral[Exp[x]]/x, {x, 1/3}, WorkingPrecision -> 105]][[1]] (* Artur Jasinski, Apr 19 2022 *)
  • PARI
    solve(x=.3,1,real(eint1(-x))) \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals log(A070769). - Amiram Eldar, Aug 14 2020
Equals root x of li(exp(x)/x)=0 where li(x) is the logarithmic integral. - Artur Jasinski, Apr 19 2022

A257821 Decimal expansion of the unique real number a>0 such that the real part of li(-a) is zero.

Original entry on oeis.org

2, 4, 6, 6, 4, 0, 8, 2, 6, 2, 4, 1, 2, 6, 7, 8, 0, 7, 5, 1, 9, 7, 1, 0, 3, 3, 5, 0, 7, 7, 5, 9, 3, 2, 9, 5, 0, 2, 9, 0, 7, 8, 0, 8, 7, 8, 2, 7, 7, 4, 0, 9, 9, 8, 2, 3, 7, 8, 6, 0, 8, 9, 8, 8, 1, 6, 1, 2, 2, 4, 0, 9, 4, 1, 5, 0, 0, 9, 1, 5, 0, 7, 1, 7, 1, 6, 2, 7, 8, 1, 5, 8, 0, 4, 6, 5, 5, 8, 4, 7, 2, 9, 3, 3, 6
Offset: 1

Views

Author

Stanislav Sykora, May 11 2015

Keywords

Comments

As discussed in A257819, the real part of li(z) is a well behaved function for any real z, except for the singularity at z=+1. It has three roots: z=A070769 (the Soldner's constant), z=0, and z=-a. However, unlike in the other two cases, the imaginary part of li(-a) is not infinitesimal in the neighborhood of this root; it is described in A257822.

Examples

			2.4664082624126780751971033507759329502907808782774099823786...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[a/.FindRoot[Re[LogIntegral[-a]]==0,{a,2},WorkingPrecision->120]][[1]] (* Vaclav Kotesovec, May 11 2015 *)
  • PARI
    li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
      if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
      return(+Pi*I-eint1(-log(c)))); }
      a=-solve(x=-3,-1,real(li(x)))  \\ Better use excess realprecision

Formula

Satisfies real(li(-a)) = 0.

A099803 Continued fraction for Soldner's constant.

Original entry on oeis.org

1, 2, 4, 1, 1, 1, 3, 1, 1, 1, 2, 47, 2, 4, 1, 12, 1, 1, 2, 2, 1, 7, 2, 1, 1, 1, 2, 30, 6, 3, 6, 1, 6, 1, 3, 1, 1, 1, 1, 10, 1, 1, 2, 2, 1, 4, 2, 5, 26, 5, 1, 19, 2, 6, 1, 10, 28, 1, 2, 1, 10, 2, 1, 1, 11, 1, 4, 19, 16, 99, 1, 1, 1, 35, 1, 1, 3, 2, 3, 1, 3, 2, 1, 1, 1, 1, 1, 1, 11, 3, 2, 1, 6, 5, 1
Offset: 0

Views

Author

Eric W. Weisstein, Oct 26 2004

Keywords

Examples

			[1, 2, 4, 1, 1, 1, 3, 1, 1, 1, 2, 47, 2, 4, 1, ...]
		

Crossrefs

Cf. A070769 (decimal expansion), A099804 (records).

Programs

  • Mathematica
    ContinuedFraction[x/.FindRoot[LogIntegral[x]==0,{x,1.4}, WorkingPrecision-> 120]] (* Harvey P. Dale, May 01 2012 *)

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A099804 Records for terms in the continued fraction of Soldner's constant.

Original entry on oeis.org

1, 2, 4, 47, 99, 294, 527, 616, 1152, 1456, 2638, 2705, 4105, 31772, 88683, 90658, 95845, 237245, 1387437, 5499408, 12672729, 110482114
Offset: 1

Views

Author

Eric W. Weisstein, Oct 26 2004

Keywords

Crossrefs

Cf. A070769 (decimal expansion of Soldner's constant).

Programs

  • Mathematica
    f = FindRoot[LogIntegral@x, {x, 3/2}, WorkingPrecision -> 2^17][[1, 2]]; cf = ContinuedFraction@f; k = 1; mx = 0; lst = {}; len = Length@ cf; While[k < len, If[cf[[k]] > mx, mx = cf[[k]]; AppendTo[lst, cf[[k]]]]; k++ ]; lst (* Robert G. Wilson v, Aug 05 2010 *)

Extensions

a(15) from Robert G. Wilson v, Aug 05 2010
More terms from Eric W. Weisstein, Sep 16 2013
a(21)-a(22) from Eric W. Weisstein, Oct 07 2013

A122421 Soldner primes: primes formed from concatenation of decimal digits of Soldner's constant.

Original entry on oeis.org

1451, 145136923488338105028396848589202744949303228364801586309300455766242559575451783565953135771108682884704075157097064920307143357020423478488319
Offset: 1

Views

Author

Eric W. Weisstein, Sep 03 2006

Keywords

Crossrefs

A122422 Numbers n such that first n digits of Soldner's constant gives a prime number.

Original entry on oeis.org

4, 144, 227, 444, 19474
Offset: 1

Views

Author

Eric W. Weisstein, Sep 03 2006

Keywords

Crossrefs

Extensions

a(5) = 19474 from Eric W. Weisstein, Sep 06 2006

A229230 Positions of incrementally largest terms in the continued fraction of Soldner's constant.

Original entry on oeis.org

0, 1, 2, 11, 69, 125, 201, 584, 1591, 2435, 2543, 4813, 9602, 12147, 122446, 172037, 185124, 203717, 319849, 471163, 3876852, 4491253
Offset: 1

Views

Author

Eric W. Weisstein, Sep 16 2013

Keywords

Comments

Correctly indexed version of A099805 with [a_0; a_1, a_2, ...] = [1; 2, 4, 1, 1, 1, 3, ...]

Crossrefs

Cf. A070769 (decimal expansion of Soldner's constant).
Cf. A099805 (= a(n) - 1).

Formula

a(n) = A099805(n) - 1.

Extensions

a(21)-a(22) from Eric W. Weisstein, Oct 07 2013
Showing 1-10 of 16 results. Next