cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091812 Decimal expansion of Sum_{k>=1} (-1)^k*log(k)/k.

Original entry on oeis.org

1, 5, 9, 8, 6, 8, 9, 0, 3, 7, 4, 2, 4, 3, 0, 9, 7, 1, 7, 5, 6, 9, 4, 7, 8, 7, 0, 3, 2, 4, 9, 1, 6, 5, 7, 0, 4, 9, 6, 2, 2, 2, 0, 2, 3, 7, 5, 6, 4, 5, 8, 7, 4, 2, 6, 7, 0, 8, 2, 4, 5, 2, 9, 6, 3, 9, 6, 5, 7, 0, 0, 2, 1, 8, 4, 0, 2, 9, 0, 0, 4, 6, 5, 9, 5, 5, 5, 0, 3, 4, 0, 3, 2, 0, 4, 6, 1, 8, 8, 2, 9, 4, 6, 3
Offset: 0

Views

Author

Benoit Cloitre, Mar 07 2004

Keywords

Comments

Equal to the derivative eta'(1) of the Dirichlet eta function eta(s) = Sum_{k>=1} (-1)^(k-1)/k^s = (1 - 2^(1-s))*zeta(s) at s = 1. - Jonathan Sondow, Dec 28 2011

Examples

			0.15986890374243097175694787032491657049622202375645874267082452963965...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.21, p. 168.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1, Overseas Publishers Association, Amsterdam, 1986, p. 746, section 5.5.1, formula 3.

Crossrefs

Programs

  • Maple
    gamma*log(2)-log(2)^2/2 ; evalf(%) ; # R. J. Mathar, Jun 10 2024
  • Mathematica
    RealDigits[EulerGamma*Log[2] - Log[2]^2/2, 10, 100][[1]] (* Amiram Eldar, Sep 12 2022 *)
    RealDigits[Limit[Derivative[1][DirichletEta][x], x -> 1], 10, 110][[1]] (* Eric W. Weisstein, Jan 08 2024 *)
  • PARI
    Euler*log(2)-log(2)^2/2 \\ Charles R Greathouse IV, Mar 28 2012

Formula

Equals gamma*log(2) - log(2)^2/2.
Equals -Sum_{k>=1} psi(k)/(k*2^k), where psi(x) is the digamma function. - Amiram Eldar, Sep 12 2022