A091891 Number of partitions of n into parts which are a sum of exactly as many distinct powers of 2 as n has 1's in its binary representation.
1, 1, 2, 1, 4, 1, 2, 1, 10, 3, 2, 1, 5, 1, 2, 1, 36, 6, 12, 1, 11, 3, 2, 1, 24, 3, 3, 1, 5, 1, 2, 1, 202, 67, 55, 9, 93, 4, 5, 1, 112, 8, 13, 1, 10, 3, 2, 1, 304, 22, 18, 1, 20, 3, 3, 1, 34, 3, 3, 1, 5, 1, 2, 1, 1828, 1267, 1456, 71, 1629, 77, 100, 2, 2342, 99, 123, 9, 132, 4, 3, 1
Offset: 0
Examples
a(9) = 3 because there are 3 partitions of 9 into parts of size 3, 5, 6, 9 which are the numbers that have two 1's in their binary representations. The 3 partitions are: 9, 6 + 3 and 3 + 3 + 3. - _Andrew Howroyd_, Apr 20 2021
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..16384 (terms n = 1..1000 from Andrew Howroyd)
Crossrefs
Programs
-
Maple
H:= proc(n) option remember; add(i, i=Bits[Split](n)) end: v:= proc(n, k) option remember; `if`(n<1, 0, `if`(H(n)=k, n, v(n-1, k))) end: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, v(i-1, k), k)+b(n-i, v(min(n-i, i), k), k))) end: a:= n-> b(n$2, H(n)): seq(a(n), n=0..80); # Alois P. Heinz, Dec 12 2021
-
Mathematica
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b]; EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]]; a[n_] := EulerT[Table[DigitCount[k, 2, 1] == DigitCount[n, 2, 1] // Boole, {k, 1, n}]][[n]]; Array[a, 100] (* Jean-François Alcover, Dec 12 2021, after Andrew Howroyd *)
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} a(n) = {EulerT(vector(n,k,hammingweight(k)==hammingweight(n)))[n]} \\ Andrew Howroyd, Apr 20 2021
Formula
Extensions
a(0)=1 prepended by Alois P. Heinz, Dec 12 2021