A091917 Coefficient array of polynomials (z-1)^n-1.
1, -2, 1, 0, -2, 1, -2, 3, -3, 1, 0, -4, 6, -4, 1, -2, 5, -10, 10, -5, 1, 0, -6, 15, -20, 15, -6, 1, -2, 7, -21, 35, -35, 21, -7, 1, 0, -8, 28, -56, 70, -56, 28, -8, 1, -2, 9, -36, 84, -126, 126, -84, 36, -9, 1, 0, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1, -2, 11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1
Offset: 0
Examples
Rows begin: { 1}, {-2, 1}, { 0, -2, 1}, {-2, 3, -3, 1}, { 0, -4, 6, -4, 1}, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
T:= n-> `if`(n=0, 1, (p-> seq(coeff(p,z,i), i=0..n))((z-1)^n-1)): seq(T(n), n=0..12); # Alois P. Heinz, May 23 2015
-
Mathematica
Table[If[n == 0, 1, CoefficientList[(z-1)^n-1, z]], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
-
PARI
row(n) = if (n==0, 1, Vecrev((z-1)^n-1)); \\ Michel Marcus, May 23 2015
Formula
T(n,k) = T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,1) = -2, T(2,0) = 0, T(n,k) = 0 for k > n or for k < 0. - Philippe Deléham, May 23 2015
G.f.: (1-2*x-x^2+x^2*y)/((x-1)*(-x+x*y-1)). - R. J. Mathar, Aug 11 2015
Comments