A091924 Primes such that their decimal representations interpreted in base 11 are also prime.
2, 3, 5, 7, 29, 43, 61, 67, 89, 139, 193, 197, 199, 227, 263, 269, 281, 331, 353, 373, 379, 467, 571, 601, 607, 643, 733, 797, 809, 821, 827, 887, 919, 937, 1033, 1039, 1093, 1129, 1231, 1237, 1259, 1277, 1303, 1327, 1381, 1451, 1453, 1459, 1583
Offset: 1
Examples
A000040(10)=29 in base 11 is 2*11^1+9*11^0=31 prime, therefore 29 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A091923.
Programs
-
Magma
[n:n in PrimesUpTo(1600)| IsPrime(Seqint(Intseq(n),11))]; // Marius A. Burtea, Jun 30 2019
-
Maple
filter:= proc(n) local L; if not isprime(n) then return false fi; L:= convert(n,base,10); isprime(add(L[i]*11^(i-1),i=1..nops(L))) end proc: select(filter, [2, seq(i,i=3..10000,2)]); # Robert Israel, Jan 28 2018
-
Mathematica
Select[Prime@ Range@ 250, PrimeQ@ FromDigits[IntegerDigits@ #, 11] &] (* Michael De Vlieger, Aug 29 2015 *)
-
PARI
is(p,b=11)={my(d=digits(p));isprime(vector(#d,i,b^(#d-i))*d~)&&isprime(p)} \\ M. F. Hasler, Jan 03 2014
Extensions
Corrected by Zak Seidov, Feb 25 2004
Comments