cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092076 Expansion of (1+4*x^3+x^6)/((1-x)*(1-x^3)^2).

Original entry on oeis.org

1, 1, 1, 7, 7, 7, 19, 19, 19, 37, 37, 37, 61, 61, 61, 91, 91, 91, 127, 127, 127, 169, 169, 169, 217, 217, 217, 271, 271, 271, 331, 331, 331, 397, 397, 397, 469, 469, 469, 547, 547, 547, 631, 631, 631, 721, 721, 721, 817, 817, 817, 919, 919, 919, 1027, 1027, 1027, 1141, 1141
Offset: 0

Views

Author

N. J. A. Sloane, Mar 29 2004

Keywords

Crossrefs

Cf. A003215.

Programs

  • Magma
    I:=[1,1,1,7,7,7,19]; [n le 7 select I[n] else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Jul 13 2015
  • Maple
    f:= gfun:-rectoproc({q(n+3)-3*q(n+2)+3*q(n+1)-q(n), q(0) = 1, q(1) = 7, q(2) = 19},q(n),remember):
    seq(f(i)$3, i=0..30); # Robert Israel, Jul 14 2015
  • Mathematica
    CoefficientList[Series[(1 + 4*x^3 + x^6)/((1 - x)*(1 - x^3)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 23 2015 *)
    LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 1, 1, 7, 7, 7, 19}, 60] (* Vincenzo Librandi, Jul 13 2015 *)
    With[{c=LinearRecurrence[{3,-3,1},{1,7,19},20]},{c,c,c}]//Flatten//Sort (* Harvey P. Dale, Aug 03 2019 *)

Formula

G.f.: (1+4*x^3+x^6)/((1-x)*(1-x^3)^2).
a(n) = a(n-1)+2*a(n-3)-2*a(n-4)-a(n-6)+a(n-7), n>7. - Wesley Ivan Hurt, Jun 23 2015
A003215 with each term repeated three times: a(n) = A003215(floor(n/3)). - Robert Israel, Jul 14 2015