A092095 a(n) = Sum_{i=0,1,2,...; n-k*i >= -n} |n-k*i| for k=4.
9, 16, 16, 24, 25, 36, 36, 48, 49, 64, 64, 80, 81, 100, 100, 120, 121, 144, 144, 168, 169, 196, 196, 224, 225, 256, 256, 288, 289, 324, 324, 360, 361, 400, 400, 440, 441, 484, 484, 528, 529, 576, 576, 624, 625, 676, 676, 728, 729, 784, 784, 840, 841, 900, 900
Offset: 5
References
- F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
- F. Smarandache, Back and Forth Summants, Arizona State Univ., Special Collections, 1972.
Links
- J. Dezert, ed., Smarandacheials (1), Mathematics Magazine for Grades 1-12, No. 4, 2004.
- J. Dezert, ed., Smarandacheials (2), Mathematics Magazine for Grades 1-12, No. 4, 2004.
- F. Smarandache, Summants [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1).
Programs
-
Maple
S := proc(n,k) local a,i ; a :=0 ; i := 0 ; while n-k*i >= -n do a := a+abs(n-k*i) ; i := i+1 ; od: RETURN(a) ; end: k := 4: seq(S(n,k),n=k+1..80) ; # R. J. Mathar, Feb 01 2008 (Adapted from program for A092096 by N. J. A. Sloane, Jul 03 2017)
-
PARI
a(n) = ((2*n+1)*(-1)^n - 2*(-I)^n - 2*I^n + 2*n*(n+3) + 3)/8; \\ Jinyuan Wang, Apr 09 2025
Formula
G.f.: x^5*(8*x^6-4*x^5-8*x^4+x^3-9*x^2+7*x+9)/((x^2+1)*(x+1)^2*(1-x)^3). - Alois P. Heinz, Apr 09 2025
Extensions
Edited with better definition by Omar E. Pol, Dec 28 2008
Entry revised by N. J. A. Sloane, Jul 03 2017
Offset changed to 5 and more terms from Jinyuan Wang, Apr 09 2025