A092098 Number of regions that the line segments in A091908(n) cut the equilateral triangle into.
1, 6, 19, 30, 61, 78, 127, 150, 217, 246, 331, 366, 469, 510, 625, 678, 817, 870, 1027, 1080, 1261, 1326, 1519, 1566, 1801, 1878, 2107, 2190, 2437, 2520, 2791, 2886, 3169, 3270, 3559, 3678, 3997, 4110, 4447, 4548, 4921, 5034, 5419, 5550, 5899, 6078, 6487
Offset: 1
Keywords
Examples
E.g. the number of chambers in the bisected triangle is six, the number of permutations on 3 letters. The number of chambers in the trisected triangle is equal to 19, the number of posets on 3 elements. - _Eric Gottlieb_, Jun 26 2005 a(2)=6: The 3 line segments cut the equilateral triangle into 6 triangles. a(3)=19: The 3*2 line segments form 12 triangles, 3 quadrilaterals, 3 pentagons and 1 central non-regular hexagon. See pictures at Pfoertner link.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..1000
- Hugo Pfoertner, Visualization of diagonal intersections in an equilateral triangle.
- Hugo Pfoertner, Visualization of diagonal intersections in an equilateral triangle. [Local copy]
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 7.
- Scott R. Shannon, Image for n = 12.
- Scott R. Shannon, Image for n = 13.
- Scott R. Shannon, Image for n = 100.
- Scott R. Shannon, Image for n = 101.
- Sequences formed by drawing all diagonals in regular polygon
Crossrefs
Programs
-
Maple
regions:=proc(n::nonnegint) local j,k,l,a; a:=0; if (n mod 2<>0) then a:=3*n^2-3*n+1 else a:=3*n^2-6*n+6 fi; for l from 1 to floor(n/2)-1 do for k from 1 to floor(n/2)-1 do for j from 1 to floor(n/2)-1 do if((n-k)*l*j=k*(n-l)*(n-j)) then a:=a-6 fi od od od; return a end proc; seq(regions(i),i=1..100); # Len Smiley and Brian Wick, Jun 30 2005
-
Mathematica
regions[n_]:= If[Mod[n,2] == 0, 3n^2-6n+6, 3n^2-3n+1]- 6*Count[ Flatten@ Table[ Abs[(n-k)l*j - k(n-l)(n-j)], {j,1,Floor[n/2]-1}, {k,1,Floor[n/2]-1}, {l,1,Floor[n/2]-1}], 0] (* Ethan Beihl, Oct 13 2016 *)
-
PARI
for(n=1,100,regions=0;if(n%2!=0,regions=3*n^2-3*n+1,regions=3*n^2-6*n+6);for(l=1,floor(n/2)-1,for(k=1,floor(n/2)-1,for(j=1,floor(n/2)-1,if((n-k)*l*j==k*(n-l)*(n-j),regions-=6))));print1(regions,",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 27 2006
Formula
Note that 3 divides a(2k) and a(2k+1)-1. - T. D. Noe, Jun 29 2005
Extensions
More terms from T. D. Noe, Jun 29 2005
Further terms from Brian Wick (mathclub(AT)math.uaa.alaska.edu), Jun 30 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 27 2006
Comments