A092101 Harmonic primes.
5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349, 431, 443, 449, 461, 467, 479, 487, 491, 499, 503, 541, 547, 557, 563, 569, 593, 619, 653, 683, 691, 709, 757, 769, 787
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302.
- A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
Programs
-
PARI
is(p)=my(K=-Mod((binomial(2*p-1, p)-1)/2/p^3,p),H=Mod(0,p));for(k=1,p-2,H+=1/k;if(H==0||H==K,return(0)));1 \\ Charles R Greathouse IV, Mar 16 2014
Extensions
More terms from Max Alekseyev, May 13 2010
Comments