cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092101 Harmonic primes.

Original entry on oeis.org

5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349, 431, 443, 449, 461, 467, 479, 487, 491, 499, 503, 541, 547, 557, 563, 569, 593, 619, 653, 683, 691, 709, 757, 769, 787
Offset: 1

Views

Author

T. D. Noe, Feb 20 2004

Keywords

Comments

For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, J_p contains only the three numbers p-1, (p-1)p and (p-1)(p+1). It has been conjectured that there are an infinite number of these primes and that their density in the primes is 1/e.
Prime p=A000040(n) is in this sequence iff neither H(k) == 0 (mod p), nor H(k) == -A177783(n) (mod p) have solutions for 1 <= k <= p-2. - Max Alekseyev, May 13 2010

Crossrefs

Cf. A092102 (non-harmonic primes), A092103 (size of J_p).

Programs

  • PARI
    is(p)=my(K=-Mod((binomial(2*p-1, p)-1)/2/p^3,p),H=Mod(0,p));for(k=1,p-2,H+=1/k;if(H==0||H==K,return(0)));1 \\ Charles R Greathouse IV, Mar 16 2014

Extensions

More terms from Max Alekseyev, May 13 2010