cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A092102 Non-harmonic primes: the odd primes not in A092101.

Original entry on oeis.org

3, 7, 11, 19, 29, 31, 37, 43, 47, 53, 59, 61, 71, 83, 89, 97, 101, 103, 109, 127, 131, 137, 151, 163, 167, 173, 181, 197, 199, 211, 227, 229, 233, 257, 269, 271, 283, 313, 347, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 433, 439, 457, 463, 509, 521, 523
Offset: 1

Views

Author

T. D. Noe, Feb 20 2004

Keywords

Comments

For p = prime(n), Boyd defines Jp to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, Jp contains only the three numbers p-1, (p-1)p and (p-1)(p+1).
Boyd's paper omits 509.

References

  • A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.

Crossrefs

Cf. A092101 (harmonic primes), A092103 (size of Jp).

A034602 Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).

Original entry on oeis.org

1, 5, 265, 2367, 237493, 2576561, 338350897, 616410400171, 7811559753873, 17236200860123055, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067, 59296957594629000880904587621, 844326030443651782154010715715
Offset: 3

Views

Author

Keywords

Comments

Equivalently, (binomial(2p,p)-2)/(2*p^3) where p runs through the primes >=5.
The values of this sequence's terms are replicated by conjectured general formula, given in A223886 (and also added to the formula section here) for k=2, j=1 and n>=3. - Alexander R. Povolotsky, Apr 18 2013

Examples

			Binomial(10,5)-2 = 250; 5^3=125 hence a(5)=1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

Crossrefs

Cf. A177783 (alternative definition of Wolstenholme quotient), A072984, A092101, A092103, A092193, A128673, A217772, A223886, A263882.

Programs

  • Magma
    [(Binomial(2*p-1,p)-1) div p^3: p in PrimesInInterval(4,100)]; // Vincenzo Librandi, Nov 23 2015
  • Maple
    f:= proc(n) local p;
    p:= ithprime(n);
    (binomial(2*p-1,p)-1)/p^3
    end proc:
    map(f, [$3..30]); # Robert Israel, Dec 19 2018
  • Mathematica
    Table[(Binomial[2 Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^3, {n, 3, 20}] (* Vincenzo Librandi, Nov 23 2015 *)

Formula

a(n) = (A088218(p)-1)/p^3 = (A001700(p-1)-1)/p^3 = (A000984(p)-2)/(2*p^3), where p=A000040(n).
a(n) = A087754(n)/2.
a(n) = (binomial(j*k*prime(n), j*prime(n)) - binomial(k*j, j)) / (k*prime(n)^3) for k=2, j=1, and n>=3. - Alexander R. Povolotsky, Apr 18 2013
a(n) = A263882(n)/prime(n) for n > 2. - Jonathan Sondow, Nov 23 2015
a(n) = numerator(tanh(Sum_{k=1..p-1} artanh(k/p)))/p^3, where p = prime(n) for n >= 3. - Thomas Ordowski, Apr 17 2025

Extensions

Edited by Max Alekseyev, May 14 2010
More terms from Vincenzo Librandi, Nov 23 2015

A072984 Least k such that prime(n) appears in the factorization of A001008(k) (the numerator of the k-th harmonic number).

Original entry on oeis.org

2, 4, 6, 3, 12, 16, 18, 22, 13, 30, 17, 40, 13, 46, 22, 58, 10, 66, 70, 72, 78, 82, 88, 11, 100, 102, 106, 25, 112, 126, 130, 5, 138, 148, 150, 156, 162, 166, 71, 178, 180, 190, 192, 196, 38, 210, 222, 22, 228, 232, 238, 240, 250, 66, 262, 33, 58, 276, 280, 282
Offset: 2

Views

Author

Benoit Cloitre, Aug 21 2002

Keywords

Comments

a(n)<=n for n =2,5,14,18,25,29,33,46,49,...
For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k). This sequence gives the smallest elements of J_p. The largest elements of J_p are given by A177734. The sizes of J_p are given by A092103.

Crossrefs

Cf. A092101 (harmonic primes), A092102 (non-harmonic primes), A092103 (size of Jp).

Programs

  • Mathematica
    A072984[n_] := Module[{p, k, sum},
       p = Prime[n]; k = 1; sum = 1/k;
       While[! Divisible[Numerator[sum], p],
        k++; sum += 1/k];
       Return[k]];
    Table[A072984[n], {n, 2, 61}] (* Robert Price, May 01 2019 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(numerator(sum(k=1,s,1/k))%prime(n)>0,s++); s)

A092103 Number of values of k for which prime(n) divides A001008(k), the numerator of the k-th harmonic number.

Original entry on oeis.org

3, 3, 13, 638, 3, 3, 25, 3, 18, 26, 15, 3, 27, 24, 17, 23, 13, 3, 45, 3, 3, 43038, 7, 74, 44, 63, 3, 1273, 3, 3515, 7, 38, 3, 3, 7, 3, 74, 526, 288, 3, 19, 3, 3, 41, 11, 59, 3, 31, 65, 176, 3, 3, 3, 20, 3, 106, 55, 3, 3, 89, 3, 3, 3, 79, 3, 3, 3, 47, 3, 21, 253, 29, 7, 79, 41, 19, 701533, 13, 9, 703, 23, 3, 205, 105, 3, 3, 323, 3, 7, 3, 3, 3, 3, 3, 3, 13, 1763
Offset: 2

Views

Author

T. D. Noe, Feb 20 2004

Keywords

Comments

For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k). This sequence gives the size of J_p. A072984 and A177734 give the smallest and largest elements of J_p, respectively.
A092101 gives primes prime(n) such that a(n) = 3 (i.e., a(A000720(A092101(m))) = 3 for all m). A092102 gives primes prime(n) such that a(n) > 3.
From Carlo Sanna, Apr 06 2016: (Start)
Eswarathasan and Levine conjectured that for any prime number p the set J_p is finite.
I proved that if J_p(x) is the number of integers in J_p that are less than x > 1, then J_p(x) < 129 p^(2/3) x^0.765 for any prime p. In particular, J_p has asymptotic density zero. (End)
Bing-Ling Wu and Yong-Gao Chen improved Sanna's (see previous comment) result showing that J_p(x) <= 3 x^(2/3 + 1/(25 log p)) for any prime p and any x > 1. - Carlo Sanna, Jan 12 2017

Examples

			a(2) = 3 because 3 divides A001008(k) for k = 2, 7, and 22.
a(4) = 13 because 7 divides A001008(k) for only the 13 values k = 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, and 102728. This is the 4th row in A229493.
		

Crossrefs

Cf. A092193 (number of generations for each prime).
Cf. A229493 (terms for each prime).

Extensions

a(8), a(15), and a(17) corrected by Max Alekseyev, Oct 23 2012
Terms a(23) onward from Carofiglio et al. (2025) added by Max Alekseyev, Apr 01 2025

A092193 Number of generations for which prime(n) divides A001008(k) for some k.

Original entry on oeis.org

4, 3, 7, 30, 3, 3, 8, 3, 5, 7, 4, 3, 5, 7, 6, 7, 4, 3, 8, 3, 3, 339, 4, 11, 10, 14, 3, 47, 3, 146, 4, 8, 3, 3, 4, 3, 20, 49, 33, 3, 6, 3, 3, 11, 5, 12, 3, 6, 17, 21, 3, 3, 3, 5, 3, 20, 18, 3, 3, 14, 3, 3, 3, 11, 3, 3, 3, 10, 3, 6, 35, 8, 4, 13, 11, 8, 1815, 5, 4, 52, 5, 3, 30, 11, 3, 3, 36, 3, 4, 3, 3, 3, 3, 3, 3, 4, 61, 4, 3, 3, 3, 3, 3, 8, 28, 4, 3, 6, 4, 6, 21, 19, 3, 94
Offset: 2

Views

Author

T. D. Noe, Feb 24 2004; corrected Jul 28 2004

Keywords

Comments

For any prime p, generation m consists of the numbers p^(m-1) <= k < p^m. The zeroth generation consists of just the number 0. When there is a k in generation m such that p divides A001008(k), then that k may generate solutions in generation m+1. It is conjectured that for all primes there are solutions for only a finite number of generations.
Boyd's table 3 states incorrectly that harmonic primes have 2 generations; harmonic primes have 3 generations.

Examples

			a(4)=7 because the fourth prime, 7, divides A001008(k) for k = 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735 and 102728. These values of k fall into 6 generations; adding the zeroth generation makes a total of 7 generations.
		

Crossrefs

Cf. A072984 (least k such that prime(n) divides A001008(k)), A092101 (harmonic primes), A092102 (non-harmonic primes).

Extensions

a(8), a(15), a(17) corrected, and terms a(23) onward from Carofiglio et al. (2025) added by Max Alekseyev, Apr 01 2025

A177734 Largest k such that prime(n) divides the numerator of the k-th harmonic number (=A001008(k)).

Original entry on oeis.org

22, 24, 102728, 1011849771855214912968404217247, 168, 288, 848874360, 528, 695552, 886725671, 50641, 1680, 2359785, 10776888210, 414839198, 42176361744, 226972, 4488, 9094138358932, 5328, 6240
Offset: 2

Views

Author

Max Alekseyev, May 12 2010

Keywords

Comments

For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k). This sequence gives the largest element of J_p. The smallest element of J_p is given by A072984. The size of J_p is given by A092103.
Term a(23) is too large to include, see b-file. - Max Alekseyev, Apr 04 2025

Crossrefs

Formula

For p = prime(n) in A092101, a(n) = p^2 - 1.

Extensions

a(5) computed by Boyd.
a(8)-a(22) from Max Alekseyev, Oct 23 2012

A177783 Wolstenholme quotient of prime p=A000040(n), i.e., such integer m

Original entry on oeis.org

3, 6, 6, 7, 10, 14, 18, 20, 16, 24, 17, 38, 39, 19, 29, 28, 12, 53, 31, 19, 53, 58, 48, 42, 1, 33, 53, 37, 5, 81, 4, 17, 29, 13, 13, 72, 75, 70, 173, 159, 111, 150, 39, 178, 106, 163, 196, 163, 172, 30, 98, 24, 177, 261, 212, 223, 122, 147, 276, 17, 92, 111, 27, 209, 241
Offset: 3

Views

Author

Max Alekseyev, May 13 2010

Keywords

Comments

a(n) = 0 iff A000040(n) is a Wolstenholme prime (given by A088164).
For n>2 and p=A000040(n), H(p^2-p) == H(p^2-1) == a(n)*p (mod p^2).

Crossrefs

Programs

  • PARI
    { a(n) = my(p); p=prime(n); ((binomial(2*p-1,p)-1)/2/p^3)%p }

Formula

a(n) = H(p-1)/p^2 mod p = A001008(p-1)/A002805(p-1)/p^2 mod p = A034602(n)/2 mod p = (binomial(2*p-1,p)-1)/(2*p^3) mod p, where p = A000040(n).
a(n) = (-1/3)*B(p-3) mod p, with p=prime(n) and B(n) is the n-th Bernoulli number. - Michel Marcus, Feb 05 2016
a(n) = A087754(n)/4 mod A000040(n).

Extensions

Edited by Max Alekseyev, May 16 2010

A092195 Primes p that do not divide A001008(k), the numerator of the k-th harmonic number H(k), for any k < p-1.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 23, 31, 41, 47, 59, 67, 71, 73, 79, 83, 89, 101, 103, 107, 113, 127, 131, 139, 149, 151, 157, 163, 167, 179, 181, 191, 193, 197, 211, 223, 229, 233, 239, 241, 251, 263, 277, 281, 283, 293, 307, 311, 317, 331, 337, 349, 359, 367, 373, 383
Offset: 1

Views

Author

T. D. Noe, Feb 24 2004

Keywords

Comments

Harmonic primes A092101 are a subset of these primes. Because these primes are analogous to the regular primes A007703 that divide the numerators of Bernoulli numbers, they might be called H-regular primes. The density of these primes is about 0.6 -- very close to the density of regular primes.

Crossrefs

Cf. A072984 (least k such that prime(n) divides A001008(k)).

Programs

  • Mathematica
    n=1; Table[While[cnt=0; n++; p=Prime[n]; k=1; h=0; While[k<=(p-1)/2, h=h+1/k; If[Mod[Numerator[h], p]==0, cnt++ ]; k++ ]; cnt>0, ]; p, {100}]

A097279 Alternating-harmonic primes.

Original entry on oeis.org

5, 11, 23, 59, 67, 83, 89, 101, 107, 109, 127, 163, 167, 197, 229, 233, 251, 283, 311, 317, 349, 421, 491, 557, 577, 643, 673, 683, 719, 727, 761, 827, 1009, 1061, 1129, 1163, 1193, 1231, 1327, 1373
Offset: 1

Views

Author

T. D. Noe, Aug 04 2004

Keywords

Comments

These primes, analogous to the harmonic primes in A092101, divide exactly one term of A058313, the numerators of the alternating harmonic numbers. It can be shown that for prime p > 3, if p = 6k-1, then p divides A058313(4k-1), otherwise if p = 6k+1, then p divides A058313(4k). Much of the analysis by Eswarathasan and Levine applies to alternating harmonic sums.

References

  • A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.

Programs

  • Mathematica
    maxPrime=1000; lst={}; Do[p=Prime[n]; cnt=0; s=0; i=1; While[s=s+(-1)^(i-1)/i; If[Mod[Numerator[s], p]==0, cnt++ ]; cnt<2&&i
    				
Showing 1-9 of 9 results.