cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A034602 Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).

Original entry on oeis.org

1, 5, 265, 2367, 237493, 2576561, 338350897, 616410400171, 7811559753873, 17236200860123055, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067, 59296957594629000880904587621, 844326030443651782154010715715
Offset: 3

Views

Author

Keywords

Comments

Equivalently, (binomial(2p,p)-2)/(2*p^3) where p runs through the primes >=5.
The values of this sequence's terms are replicated by conjectured general formula, given in A223886 (and also added to the formula section here) for k=2, j=1 and n>=3. - Alexander R. Povolotsky, Apr 18 2013

Examples

			Binomial(10,5)-2 = 250; 5^3=125 hence a(5)=1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

Crossrefs

Cf. A177783 (alternative definition of Wolstenholme quotient), A072984, A092101, A092103, A092193, A128673, A217772, A223886, A263882.

Programs

  • Magma
    [(Binomial(2*p-1,p)-1) div p^3: p in PrimesInInterval(4,100)]; // Vincenzo Librandi, Nov 23 2015
  • Maple
    f:= proc(n) local p;
    p:= ithprime(n);
    (binomial(2*p-1,p)-1)/p^3
    end proc:
    map(f, [$3..30]); # Robert Israel, Dec 19 2018
  • Mathematica
    Table[(Binomial[2 Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^3, {n, 3, 20}] (* Vincenzo Librandi, Nov 23 2015 *)

Formula

a(n) = (A088218(p)-1)/p^3 = (A001700(p-1)-1)/p^3 = (A000984(p)-2)/(2*p^3), where p=A000040(n).
a(n) = A087754(n)/2.
a(n) = (binomial(j*k*prime(n), j*prime(n)) - binomial(k*j, j)) / (k*prime(n)^3) for k=2, j=1, and n>=3. - Alexander R. Povolotsky, Apr 18 2013
a(n) = A263882(n)/prime(n) for n > 2. - Jonathan Sondow, Nov 23 2015
a(n) = numerator(tanh(Sum_{k=1..p-1} artanh(k/p)))/p^3, where p = prime(n) for n >= 3. - Thomas Ordowski, Apr 17 2025

Extensions

Edited by Max Alekseyev, May 14 2010
More terms from Vincenzo Librandi, Nov 23 2015

A092101 Harmonic primes.

Original entry on oeis.org

5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349, 431, 443, 449, 461, 467, 479, 487, 491, 499, 503, 541, 547, 557, 563, 569, 593, 619, 653, 683, 691, 709, 757, 769, 787
Offset: 1

Views

Author

T. D. Noe, Feb 20 2004

Keywords

Comments

For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, J_p contains only the three numbers p-1, (p-1)p and (p-1)(p+1). It has been conjectured that there are an infinite number of these primes and that their density in the primes is 1/e.
Prime p=A000040(n) is in this sequence iff neither H(k) == 0 (mod p), nor H(k) == -A177783(n) (mod p) have solutions for 1 <= k <= p-2. - Max Alekseyev, May 13 2010

Crossrefs

Cf. A092102 (non-harmonic primes), A092103 (size of J_p).

Programs

  • PARI
    is(p)=my(K=-Mod((binomial(2*p-1, p)-1)/2/p^3,p),H=Mod(0,p));for(k=1,p-2,H+=1/k;if(H==0||H==K,return(0)));1 \\ Charles R Greathouse IV, Mar 16 2014

Extensions

More terms from Max Alekseyev, May 13 2010

A072984 Least k such that prime(n) appears in the factorization of A001008(k) (the numerator of the k-th harmonic number).

Original entry on oeis.org

2, 4, 6, 3, 12, 16, 18, 22, 13, 30, 17, 40, 13, 46, 22, 58, 10, 66, 70, 72, 78, 82, 88, 11, 100, 102, 106, 25, 112, 126, 130, 5, 138, 148, 150, 156, 162, 166, 71, 178, 180, 190, 192, 196, 38, 210, 222, 22, 228, 232, 238, 240, 250, 66, 262, 33, 58, 276, 280, 282
Offset: 2

Views

Author

Benoit Cloitre, Aug 21 2002

Keywords

Comments

a(n)<=n for n =2,5,14,18,25,29,33,46,49,...
For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k). This sequence gives the smallest elements of J_p. The largest elements of J_p are given by A177734. The sizes of J_p are given by A092103.

Crossrefs

Cf. A092101 (harmonic primes), A092102 (non-harmonic primes), A092103 (size of Jp).

Programs

  • Mathematica
    A072984[n_] := Module[{p, k, sum},
       p = Prime[n]; k = 1; sum = 1/k;
       While[! Divisible[Numerator[sum], p],
        k++; sum += 1/k];
       Return[k]];
    Table[A072984[n], {n, 2, 61}] (* Robert Price, May 01 2019 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(numerator(sum(k=1,s,1/k))%prime(n)>0,s++); s)

A092102 Non-harmonic primes: the odd primes not in A092101.

Original entry on oeis.org

3, 7, 11, 19, 29, 31, 37, 43, 47, 53, 59, 61, 71, 83, 89, 97, 101, 103, 109, 127, 131, 137, 151, 163, 167, 173, 181, 197, 199, 211, 227, 229, 233, 257, 269, 271, 283, 313, 347, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 433, 439, 457, 463, 509, 521, 523
Offset: 1

Views

Author

T. D. Noe, Feb 20 2004

Keywords

Comments

For p = prime(n), Boyd defines Jp to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, Jp contains only the three numbers p-1, (p-1)p and (p-1)(p+1).
Boyd's paper omits 509.

References

  • A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.

Crossrefs

Cf. A092101 (harmonic primes), A092103 (size of Jp).

A177734 Largest k such that prime(n) divides the numerator of the k-th harmonic number (=A001008(k)).

Original entry on oeis.org

22, 24, 102728, 1011849771855214912968404217247, 168, 288, 848874360, 528, 695552, 886725671, 50641, 1680, 2359785, 10776888210, 414839198, 42176361744, 226972, 4488, 9094138358932, 5328, 6240
Offset: 2

Views

Author

Max Alekseyev, May 12 2010

Keywords

Comments

For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k). This sequence gives the largest element of J_p. The smallest element of J_p is given by A072984. The size of J_p is given by A092103.
Term a(23) is too large to include, see b-file. - Max Alekseyev, Apr 04 2025

Crossrefs

Formula

For p = prime(n) in A092101, a(n) = p^2 - 1.

Extensions

a(5) computed by Boyd.
a(8)-a(22) from Max Alekseyev, Oct 23 2012

A177783 Wolstenholme quotient of prime p=A000040(n), i.e., such integer m

Original entry on oeis.org

3, 6, 6, 7, 10, 14, 18, 20, 16, 24, 17, 38, 39, 19, 29, 28, 12, 53, 31, 19, 53, 58, 48, 42, 1, 33, 53, 37, 5, 81, 4, 17, 29, 13, 13, 72, 75, 70, 173, 159, 111, 150, 39, 178, 106, 163, 196, 163, 172, 30, 98, 24, 177, 261, 212, 223, 122, 147, 276, 17, 92, 111, 27, 209, 241
Offset: 3

Views

Author

Max Alekseyev, May 13 2010

Keywords

Comments

a(n) = 0 iff A000040(n) is a Wolstenholme prime (given by A088164).
For n>2 and p=A000040(n), H(p^2-p) == H(p^2-1) == a(n)*p (mod p^2).

Crossrefs

Programs

  • PARI
    { a(n) = my(p); p=prime(n); ((binomial(2*p-1,p)-1)/2/p^3)%p }

Formula

a(n) = H(p-1)/p^2 mod p = A001008(p-1)/A002805(p-1)/p^2 mod p = A034602(n)/2 mod p = (binomial(2*p-1,p)-1)/(2*p^3) mod p, where p = A000040(n).
a(n) = (-1/3)*B(p-3) mod p, with p=prime(n) and B(n) is the n-th Bernoulli number. - Michel Marcus, Feb 05 2016
a(n) = A087754(n)/4 mod A000040(n).

Extensions

Edited by Max Alekseyev, May 16 2010

A229493 Irregular triangle in which row n has numbers k such that prime(n) divides A001008(k), the numerator of the k-th harmonic number.

Original entry on oeis.org

2, 7, 22, 4, 20, 24, 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728, 3, 7, 10, 77, 80, 84, 87, 110, 113, 117, 120, 848, 852, 856, 882, 888, 958, 962, 966, 1291, 1293, 9328, 9331, 9335, 9338, 9376, 9378, 10583, 10587, 10591, 14205, 14207
Offset: 2

Views

Author

T. D. Noe and Arkadiusz Wesolowski, Nov 11 2013

Keywords

Comments

The length of each row is given in A092103.

Examples

			The irregular triangle begins:
2, 7, 22
4, 20, 24
6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728
3, 7, 10, 77, 80, 84, 87, 110, 113, 117, 120, 848, 852, 856, 882, 888,...
		

Crossrefs

Cf. A092103 (number of k for which prime(n) divides A001008(k)).

Programs

  • Mathematica
    (* rows 2, 3, and part of 4 *) h = ParallelTable[Numerator[HarmonicNumber[i]], {i, 10000}]; Flatten[Table[Position[h, _?(Mod[#, p] == 0 &)], {p, {3, 5, 7}}]]
Showing 1-7 of 7 results.