A246842
Primes p such that p + m^2 is prime for all m in {2,4,6,8,10,12,14,16}.
Original entry on oeis.org
37, 163, 56893, 409333, 1483087, 1867783, 10101463, 18292957, 31284493, 52896517, 58048057, 157861663, 175933717, 180336193, 222640867, 258001837, 276739747, 349693117, 371305267, 445890307, 543764323, 613305067, 678551833, 748576753, 828497443
Offset: 1
-
s=[]; forprime(p=2, 10e9, forstep(i=2, 16, 2, if(!isprime(p+i^2), next(2))); s=concat(s, p)); s \\ Colin Barker, Sep 05 2014
Typos in data and comments fixed by
Colin Barker, Sep 05 2014
A247269
Primes p such that p + m^2 is prime for all m in {2,4,6,8,10,12,14,16,18}.
Original entry on oeis.org
163, 409333, 1483087, 1867783, 222640867, 258001837, 371305267, 748576753, 828497443, 1235054137, 2059599067, 5767711867, 5929920613, 8965599883, 9055004953, 9170160343, 9655686727, 9670115977, 9671300983, 10646399437, 12253792783, 12627473917, 19635778453
Offset: 1
-
forprime(p=1,10^12,c=0;for(i=1,9,if(ispseudoprime(p+(2*i)^2),c++);if(!ispseudoprime(p+(2*i)^2),break));if(c==9,print1(p,", "))) \\ Derek Orr, Sep 11 2014
-
is(n)=my(t=n%5); if(t!=2 && t!=3, return(0)); forstep(i=4,18,2, if(!isprime(n+i^2),return(0))); isprime(n) && isprime(n+4)
p=2; forprime(q=3,1e12, if(q-p==4 && is(p), print1(p", ")); p=q) \\ Charles R Greathouse IV, Sep 11 2014
A247273
Primes p such that p + m^2 is prime for all m in {2,4,6,8,10,12,14,16,18,20,22}.
Original entry on oeis.org
163, 409333, 9671300983, 186521536807, 376040154163, 459775038913, 485142116713, 773464440907, 916792710667, 982557050143, 1087801149583, 1213507492723, 1822896797857, 2131006835017, 3026318319523, 4617478214407, 5141744558017, 6552892412047, 6629618954863, 6787014897877, 7636453217677, 7788411508483, 8311114648153, 8547311473387, 8668135024957, 9206471763547
Offset: 1
-
forprime(p=1,10^12,c=0;for(i=1,11,if(ispseudoprime(p+(2*i)^2),c++));if(c==11,print1(p,", "))) \\ Derek Orr, Sep 11 2014
A247275
Primes p such that p + m^2 is prime for all m in {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}.
Original entry on oeis.org
163, 409333, 376040154163, 1822896797857, 9871431850597, 13491637509487, 19802478368863
Offset: 1
-
forprime(p=1, oo, c=0; for(i=1, 12, if(ispseudoprime(p+(2*i)^2), c++)); if(c==12, print1(p, ", "))) \\ Derek Orr, Sep 11 2014
A247276
Primes p such that p + m^2 is prime for all m in {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26}.
Original entry on oeis.org
163, 409333, 13491637509487, 19802478368863
Offset: 1
-
Select[Prime[Range[35000]],AllTrue[#+{4,16,36,64,100,144,196,256,324,400,484,576,676},PrimeQ]&] (* The program generates the first two terms of the sequence. To generate a(3) and a(4), increase the Range constant to 67*10^10 but the program will take a very long time to run. *) (* Harvey P. Dale, Mar 05 2025 *)
-
forprime(p=1, 10^12, c=0; for(i=1, 13, if(ispseudoprime(p+(2*i)^2), c++);if(!ispseudoprime(p+(2*i)^2),break)); if(c==13, print1(p, ", "))) \\ Derek Orr, Sep 11 2014
Showing 1-5 of 5 results.
Comments