A092129 Numbers n such that n, n+2, n+4, n+6, n+8, n+10, n+12 are semiprimes.
3091, 8129, 8131, 9983, 9985, 55559, 92603, 99443, 99445, 112709, 132077, 132079, 182749, 190937, 190939, 209479, 237449, 237451, 239089, 249689, 296779, 300449, 313411, 401429, 401431, 441677, 441679, 452639, 452641, 547157, 604487, 604489
Offset: 1
Programs
-
Mathematica
PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 631200], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == PrimeFactorExponentsAdded[ # + 6] == PrimeFactorExponentsAdded[ # + 8] == PrimeFactorExponentsAdded[ # + 10] == PrimeFactorExponentsAdded[ # + 12] == 2 &] (* Robert G. Wilson v, Feb 24 2004 *) Select[Range[610000],Union[PrimeOmega[#+Range[0,12,2]]]=={2}&] (* Harvey P. Dale, Oct 14 2018 *)
Extensions
More terms from Don Reble, Feb 23 2004
More terms from Robert G. Wilson v, Feb 24 2004
Comments