cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A082919 Numbers k such that k, k+2, k+4, k+6, k+8, k+10, k+12 and k+14 are semiprimes.

Original entry on oeis.org

8129, 9983, 99443, 132077, 190937, 237449, 401429, 441677, 452639, 604487, 802199, 858179, 991289, 1471727, 1474607, 1963829, 1999937, 2376893, 2714987, 3111977, 3302039, 3869237, 4622087, 4738907, 6156137, 7813559, 8090759
Offset: 1

Views

Author

Hugo Pfoertner, Apr 22 2003

Keywords

Comments

Start of a cluster of 8 consecutive odd semiprimes. Semiprimes in arithmetic progression. All terms are odd, see also A056809.
Note that there cannot exist 9 consecutive odd semiprimes. Out of any 9 consecutive odd numbers, one of them will be divisible by 9. The only multiple of 9 which is a semiprime is 9 itself and it is easy to see that's not part of a solution. - Jack Brennen, Jan 04 2006
For the first 500 terms, a(n) is roughly 40000*n^1.6, so the sequence appears to be infinite. Note that (a(n)+4)/3 and (a(n)+10)/3 are twin primes. - Don Reble, Jan 05 2006
All terms == 11 (mod 18). - Zak Seidov, Sep 27 2012
There is at least one even semiprime between k and k+14 for 1812 of the first 10000 terms. - Donovan Johnson, Oct 01 2012
All terms == {29,47,83} (mod 90). - Zak Seidov, Sep 13 2014
Among the first 10000 terms, from all 80000 numbers a(n)+m, m=0,2,4,6,8,10,12,14, the only square is a(4637) + 2 = 23538003241 = 153421^2 (153421 is prime, of course). - Zak Seidov, Dec 22 2014

Examples

			a(1)=8129 because 8129=11*739, 8131=47*173, 8133=3*2711, 8135=5*1627, 8137=79*103, 8139=3*2713, 8141=7*1163, 8143=17*479 are semiprimes.
		

References

  • Author of this sequence is Jack Brennen, who provided the terms up to 991289 in a posting to the seqfan mailing list on April 5, 2003.

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[3*10^6], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == PrimeFactorExponentsAdded[ # + 6] == PrimeFactorExponentsAdded[ # + 8] == PrimeFactorExponentsAdded[ # + 10] == PrimeFactorExponentsAdded[ # + 12] == PrimeFactorExponentsAdded[ # + 14] == 2 &] (* Robert G. Wilson v and Zak Seidov, Feb 24 2004 *)

A092207 Semiprimes k such that k+2 is also a semiprime.

Original entry on oeis.org

4, 33, 49, 55, 85, 91, 93, 119, 121, 141, 143, 159, 183, 185, 201, 203, 213, 215, 217, 219, 235, 247, 265, 287, 289, 299, 301, 303, 319, 321, 327, 339, 391, 393, 411, 413, 415, 445, 451, 469, 471, 515, 517, 527, 533, 535, 543, 551, 579, 581, 589, 633, 667
Offset: 1

Views

Author

Robert G. Wilson v and Zak Seidov, Feb 24 2004

Keywords

Comments

Starting with 33 all terms are odd. First squares are 4, 49, 169, 361, 529, 961, 1369, 2209, 2809, 4489, ... - Zak Seidov, Feb 17 2017

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 668], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == 2 &]
    Select[Range[700],PrimeOmega[#]==PrimeOmega[#+2]==2&] (* Harvey P. Dale, Aug 20 2011 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,700}],{1,,1}] [[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, May 29 2017 *)
  • PARI
    is(n)=if(n%2==0, return(n==4)); bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Feb 21 2017
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen(): # generator of terms
        yield 4
        nxt = 0
        for k in count(5, 2):
            prv, nxt = nxt, sum(factorint(k+2).values())
            if prv == nxt == 2: yield k
    print(list(islice(agen(), 53))) # Michael S. Branicky, Nov 26 2022

A092125 Numbers n such that n, n+2, n+4 are semiprimes.

Original entry on oeis.org

91, 119, 141, 183, 201, 213, 215, 217, 287, 299, 301, 319, 391, 411, 413, 469, 515, 533, 579, 667, 685, 695, 789, 813, 1055, 1077, 1133, 1135, 1137, 1145, 1165, 1203, 1253, 1313, 1343, 1345, 1347, 1383, 1385, 1387, 1389, 1401, 1561, 1639, 1685, 1687, 1761
Offset: 1

Views

Author

Zak Seidov, Feb 22 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, see also A056809.

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n| &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [2..4300]|IsSemiprime(n) and IsSemiprime(n+2) and IsSemiprime(n+4)] // Vincenzo Librandi, Dec 16 2010
  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 1792], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == 2 &] (* Robert G. Wilson v, Feb 24 2004 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,2000}],{1,,1,,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 17 2020 *)

A092126 Numbers n such that n, n+2, n+4, n+6 are semiprimes.

Original entry on oeis.org

213, 215, 299, 411, 1133, 1135, 1343, 1345, 1383, 1385, 1387, 1685, 1793, 1835, 1837, 1891, 1937, 1939, 1957, 2045, 2315, 2317, 2513, 2567, 2807, 2809, 2929, 3091, 3093, 3095, 3097, 3147, 3149, 3647, 3957, 3977, 3979, 4115, 4313, 4315, 4411, 4529, 4531
Offset: 1

Views

Author

Zak Seidov, Feb 22 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, see also A056809.

Crossrefs

Programs

A092128 Numbers n such that n, n+2, n+4, n+6, n+8, n+10 are semiprimes.

Original entry on oeis.org

1383, 3091, 3093, 5609, 8129, 8131, 8133, 9753, 9983, 9985, 9987, 10401, 11013, 12053, 13637, 16499, 22457, 30991, 43339, 45803, 49083, 53761, 55559, 55561, 58277, 63047, 63951, 64829, 69603, 71727, 76803, 80633, 92603, 92605, 98493
Offset: 1

Views

Author

Zak Seidov, Feb 22 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, see also A056809.

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 99210], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == PrimeFactorExponentsAdded[ # + 6] == PrimeFactorExponentsAdded[ # + 8] == PrimeFactorExponentsAdded[ # + 10] == 2 &] (* Robert G. Wilson v, Feb 24 2004 *)
    spQ[n_]:=PrimeOmega[n]==2; Select[Range[100000],AllTrue[#+{0,2,4,6,8,10},spQ]&] (* Harvey P. Dale, Dec 19 2021 *)

Extensions

More terms from Don Reble, Feb 23 2004
More terms from Robert G. Wilson v, Feb 24 2004

A092127 Numbers n such that n, n+2, n+4, n+6, n+8 are semiprimes.

Original entry on oeis.org

213, 1133, 1343, 1383, 1385, 1835, 1937, 2315, 2807, 3091, 3093, 3095, 3147, 3977, 4313, 4529, 4835, 5089, 5609, 5611, 6185, 6533, 7141, 8129, 8131, 8133, 8135, 9753, 9755, 9983, 9985, 9987, 9989, 10401, 10403, 11013, 11015, 11099, 11663, 12053
Offset: 1

Views

Author

Zak Seidov, Feb 22 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, see also A056809.

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 12054], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == PrimeFactorExponentsAdded[ # + 6] == PrimeFactorExponentsAdded[ # + 8] == 2 &] (* Robert G. Wilson v, Feb 24 2004 *)

A092209 Smallest number k such that k, k+2, k+4, ..., k+2n are semiprimes.

Original entry on oeis.org

4, 4, 91, 213, 213, 1383, 3091, 8129
Offset: 0

Views

Author

Robert G. Wilson v and Zak Seidov, Feb 24 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, except for the first two. See also A056809.

Crossrefs

First entry in A001358, A092207, A092125, A092126, A092127, A092128, A092129, A082919 respectively.

A123017 Semiprimes k such that k+3 is also a semiprime.

Original entry on oeis.org

6, 22, 35, 46, 55, 62, 74, 82, 91, 115, 118, 119, 142, 143, 155, 158, 166, 202, 203, 206, 214, 215, 218, 259, 262, 295, 298, 299, 302, 323, 326, 355, 358, 362, 391, 395, 451, 466, 478, 482, 502, 511, 514, 526, 535, 542, 551, 559, 562, 583, 586, 611, 623, 626
Offset: 1

Views

Author

Jonathan Vos Post, Nov 04 2006

Keywords

Comments

When a(n+1) = a(n) + 3 we have that a(n) is a semiprime such that a(n) and a(n)+3 and a(n) + 3 + 3 are all semiprimes, hence at least 3 semiprimes in arithmetic progression with common difference 3. This subsequence begins 115, 155. There cannot be 4 semiprimes in arithmetic progression with common difference 3, starting with k, because modulo 4 we have {k, k+3, k+6, k+9} == {k+0, k+3, k+2, k+1} and one of these must be divisible by 4, hence a nonsemiprime (eliminating k = 4 by inspection).

Examples

			a(1) = 6 because 6 = 2 * 3 is semiprime and 6 + 3 = 9 = 3^2 is semiprime.
a(2) = 22 because 22 = 2 * 11 and 22 + 3 = 25 = 5^2.
a(3) = 35 because 35 = 5 * 7  and 35 + 3 = 38 = 2 * 19.
a(4) = 46 because 46 = 2 * 23 and 46 + 3 = 49 = 7^2.
a(5) = 55 because 55 = 5 * 11 and 55 + 3 = 58 = 2 * 29.
		

Crossrefs

Programs

  • Mathematica
    semiprimeQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range@ 670, semiprimeQ[ # ] && semiprimeQ[ # + 3] &] (* Robert G. Wilson v, Aug 31 2007 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,700}],{1,,,1}][[All, 1]] (* Requires Mathematica version 10 or later *)  (* Harvey P. Dale, Mar 03 2017 *)

Formula

{a(n)} = {k such that k is in A001358 and k+3 is in A001358}.

Extensions

More terms from Robert G. Wilson v, Aug 31 2007

A124570 Array read by antidiagonals: T(d,k) (k >= 1, d = 1,2,3,4,5,6,...) = smallest semiprime s of k (not necessarily consecutive) semiprimes in arithmetic progression with common difference d, or 0 if there is no such arithmetic progression.

Original entry on oeis.org

4, 4, 4, 4, 9, 4, 4, 4, 33, 4, 4, 6, 91, 0, 4, 4, 6, 115, 213, 0, 4, 4, 4, 6, 0, 213, 0, 4, 4, 4, 4, 111, 0, 1383, 0, 4, 4, 14, 9, 0, 201, 0, 3091, 0, 4, 4, 6, 51, 203, 0, 201, 0, 8129, 0, 4, 4, 6, 6, 0, 1333, 0, 481, 0, 0, 0, 4, 4, 4, 77, 69, 0, 1333, 0, 5989, 0, 0, 0, 4
Offset: 1

Views

Author

Jonathan Vos Post, Nov 04 2006

Keywords

Comments

Comment from Hugo van der Sanden Aug 14 2021: (Start)
Row d=12 starts 4 9 9 10 10 469 3937 7343 7343 44719 78937 78937 78937 78937 55952333 233761133 597191343199.
Row d=18 starts 4 4 15 15 15 695 695 1727 7711 13951 13951 46159 400847 400847 400847 65737811 13388955301 934046384293.
Row d=24 starts 4 9 9 10 10 793 4819 6415 7271 14069 14069 14069 31589 67344271 616851797 48299373047 48299373047 20302675273219.
Row d=30 starts 4 4 9 25 25 2779 2779 6347 6347 6347 10811 10811 87109 87109 87109 1513723 15009191 15009191 316612697 316612697 1275591688621.
Row d=36 starts 4 10 10 10 15 1333 3161 4997 6865 34885 142171 834863 1327447 35528747 720945097 63389173477 63389173477 16074207679897 41728758250241.
Row d=42 starts 4 4 9 35 35 2701 2987 2987 7729 26995 26995 185795 307553 708385 708385 708385 1090198367 1819546069 20263042201 5672249016001.
Later terms in these rows are always >10^14. (End)
If p is the least prime that does not divide d, then T(d,k) <= p^2 if k >= p^2 (i.e. any a.p. of length >= p^2 with difference d contains a term divisible by p^2, and the only semiprime divisible by p^2 is p^2). Thus every row is eventually 0. - Robert Israel, Aug 11 2024

Examples

			Array begins:
d.\...k=1.k=2.k=3.k=4.k=5..k=6..k=7..k=8....k=9..k=10.k=11..k=12.
0..|..4...4...4...4...4....4....4....4......4....4.....4.....4...
1..|..4...9...33..0...0....0....0....0......0....0.....0.....0....
2..|..4...4...91..213.213..1383.3091.8129...0....0.....0.....0.....
3..|..4...6...115.0...0....0....0....0......0....0.....0.....0.....
4..|..4...6...6...111.201..201..481..5989...0....0.....0.....0....
5..|..4...4...4...0...0....0....0....0......0....0.....0.....0.....
6..|..4...4...9...203.1333.1333.1333.2159...8309.18799.60499.60499
7..|..4...14..51..0...0....0....0....0......0....0.....0.....0.....
8..|..4...6...6...69..473..511..511..112697.0....0.....0.....0.....
9..|..4...6...77..0...0....0....0....0......0....0.....0.....0.....
10.|..4...4...15..289.289..289..1631.13501..0....0.....0.....0.....
11.|..4...4...4...0...0....0....0....0......0....0.....0.....0.....
Example for row 3: 115 = 5 * 23 is semiprime, 115+3 = 118 = 2 * 59 is semiprime and 115+3+3 = 121 = 11^2 is semiprime, so T(3,3) = 115.
		

Crossrefs

Semiprime analog of A124064.
Cf. A125025 (row lengths), A001358, A056809, A070552, A092125, A092126, A092127, A092128, A092129, A124064, A092209 (row d=2), A091016 (row d=6).

Formula

T(1,2)=A070552(1). T(1,3)=A056809(1). T(2,4)=A092126(1). T(2,5)=A092127(1). T(2,6)=A092128(1). T(2,7)=A092129(1). T(2,8)=A082919(1). T(3,2)=A123017(1). T(d,1)=A001358(1). - R. J. Mathar, Aug 05 2021

Extensions

Corrected and extended by R. J. Mathar, Nov 06 2006
Definition clarified by Robert Israel, Aug 11 2024

A091016 a(n) is the least x such that the n values x+0, x+6, x+12, ..., x+6*(n-1) are all products of exactly two primes (i.e., semiprimes).

Original entry on oeis.org

4, 4, 9, 203, 1333, 1333, 1333, 2159, 8309, 18799, 60499, 60499, 186779, 186779, 186779, 12015573923, 12015573923, 6763513182767
Offset: 1

Views

Author

Don Reble, Feb 25 2004

Keywords

Comments

a(19) > 1.e14 if it exists. - Hugo van der Sanden, Aug 06 2021

Examples

			a(4)=203 because 203 = 7*29, 209 = 11*19, 215 = 5*43, 221 = 13*17.
		

Crossrefs

Cf. A082919, A092129. Row 6 of A124570.

Extensions

a(8) and a(9) corrected and a(18) from Donovan Johnson, Oct 01 2010
Showing 1-10 of 11 results. Next