A082919 Numbers k such that k, k+2, k+4, k+6, k+8, k+10, k+12 and k+14 are semiprimes.
8129, 9983, 99443, 132077, 190937, 237449, 401429, 441677, 452639, 604487, 802199, 858179, 991289, 1471727, 1474607, 1963829, 1999937, 2376893, 2714987, 3111977, 3302039, 3869237, 4622087, 4738907, 6156137, 7813559, 8090759
Offset: 1
Keywords
Examples
a(1)=8129 because 8129=11*739, 8131=47*173, 8133=3*2711, 8135=5*1627, 8137=79*103, 8139=3*2713, 8141=7*1163, 8143=17*479 are semiprimes.
References
- Author of this sequence is Jack Brennen, who provided the terms up to 991289 in a posting to the seqfan mailing list on April 5, 2003.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000 (terms a(1001) to a(2000) from Zak Seidov)
- Eric Weisstein's World of Mathematics, Semiprime.
Crossrefs
Programs
-
Mathematica
PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[3*10^6], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == PrimeFactorExponentsAdded[ # + 6] == PrimeFactorExponentsAdded[ # + 8] == PrimeFactorExponentsAdded[ # + 10] == PrimeFactorExponentsAdded[ # + 12] == PrimeFactorExponentsAdded[ # + 14] == 2 &] (* Robert G. Wilson v and Zak Seidov, Feb 24 2004 *)
Comments