cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A092208 Duplicate of A082919.

Original entry on oeis.org

8129, 9983, 99443, 132077, 190937, 237449, 401429, 441677, 452639, 604487
Offset: 1

Views

Author

Keywords

A092207 Semiprimes k such that k+2 is also a semiprime.

Original entry on oeis.org

4, 33, 49, 55, 85, 91, 93, 119, 121, 141, 143, 159, 183, 185, 201, 203, 213, 215, 217, 219, 235, 247, 265, 287, 289, 299, 301, 303, 319, 321, 327, 339, 391, 393, 411, 413, 415, 445, 451, 469, 471, 515, 517, 527, 533, 535, 543, 551, 579, 581, 589, 633, 667
Offset: 1

Views

Author

Robert G. Wilson v and Zak Seidov, Feb 24 2004

Keywords

Comments

Starting with 33 all terms are odd. First squares are 4, 49, 169, 361, 529, 961, 1369, 2209, 2809, 4489, ... - Zak Seidov, Feb 17 2017

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 668], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == 2 &]
    Select[Range[700],PrimeOmega[#]==PrimeOmega[#+2]==2&] (* Harvey P. Dale, Aug 20 2011 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,700}],{1,,1}] [[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, May 29 2017 *)
  • PARI
    is(n)=if(n%2==0, return(n==4)); bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Feb 21 2017
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen(): # generator of terms
        yield 4
        nxt = 0
        for k in count(5, 2):
            prv, nxt = nxt, sum(factorint(k+2).values())
            if prv == nxt == 2: yield k
    print(list(islice(agen(), 53))) # Michael S. Branicky, Nov 26 2022

A241483 Primes p such that p+2, p+4, p+6, p+8, p+10 and p+12 are all semiprime.

Original entry on oeis.org

1381, 3089, 10399, 49081, 53759, 63949, 76801, 98491, 107509, 109397, 113341, 143093, 182747, 204331, 209477, 239087, 252949, 255989, 313409, 396983, 426287, 500341, 602779, 677333, 812281, 832801, 1516531, 1574939, 1599151, 1619507, 1678639, 1866737, 2046449
Offset: 1

Views

Author

K. D. Bajpai, Apr 23 2014

Keywords

Examples

			1381 is prime and appears in the sequence because 1381+2 = 1383 = 3*461, 1381+4 = 1385 = 5*277, 1381+6 = 1387 = 19*73, 1381+8 = 1389 = 3*463, 1381+10 = 1391 = 13*107 and  1381+12 = 1393 = 7*199, which are all semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local a,b,d,e,f,g,k; k:=ithprime(n); a:=bigomega(k+2); b:=bigomega(k+4); d:=bigomega(k+6);  e:=bigomega(k+8); f:=bigomega(k+10); g:=bigomega(k+12);  if a=2 and  b=2 and  d=2 and  e=2 and  f=2 and  g=2then RETURN (k);  fi; end: seq(KD(), n=1..200000);
  • Mathematica
    KD = {};  Do[t = Prime[n]; If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2 && PrimeOmega[t + 6] == 2 && PrimeOmega[t + 8] == 2 && PrimeOmega[t + 10] == 2 && PrimeOmega[t + 12] == 2, AppendTo[KD, t]], {n, 200000}]; KD
    Select[Prime[Range[155000]],Union[PrimeOmega/@(#+2Range[6])]=={2}&] (* Harvey P. Dale, Dec 13 2018 *)
  • PARI
    is(n)=if(n%3==1, isprime((n+2)/3) && isprime((n+8)/3) && bigomega(n+4)==2 && bigomega(n+10)==2, isprime((n+4)\3) && isprime((n+10)\3) && bigomega(n+2)==2 && bigomega(n+8)==2) && isprime(n) && bigomega(n+6)==2 && bigomega(n+12)==2
    forprime(p=2,1e7,if(is(p),print1(p", "))) \\ Charles R Greathouse IV, Aug 25 2014

A092209 Smallest number k such that k, k+2, k+4, ..., k+2n are semiprimes.

Original entry on oeis.org

4, 4, 91, 213, 213, 1383, 3091, 8129
Offset: 0

Views

Author

Robert G. Wilson v and Zak Seidov, Feb 24 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, except for the first two. See also A056809.

Crossrefs

First entry in A001358, A092207, A092125, A092126, A092127, A092128, A092129, A082919 respectively.

A097824 Gaps associated with the arithmetic progressions of semiprimes in A096003.

Original entry on oeis.org

12, 12, 4, 52, 52, 72, 96, 198, 198, 114, 594, 48, 354, 1860, 3942, 2574, 2574, 2574, 20910, 20910, 9600, 9600, 152250, 152250, 152250, 152250, 1887270, 4667040, 4094790
Offset: 4

Views

Author

Hugo Pfoertner, Aug 27 2004

Keywords

Comments

The terms a(1),a(2) and a(3) are omitted to avoid the ambiguity caused by the two progressions of length 3 ending at A096003(3)=14: a(3)=5 for (4,9,14) or a(3)=4 for (6,10,14).

Examples

			a(6)=4 because the 6 semiprimes in the progression ending at A096003(6)=221 are separated by an increment of 4: 201=3*67, 205=5*41, 209=11*19, 213=3*71, 217=7*31, 221=13*17.
		

Crossrefs

Cf. A096003, A093364 gaps in arithmetic progressions of primes, A082919 clusters of 8 consecutive semiprimes.

Extensions

a(26)-a(30) from Hugo Pfoertner, Sep 07 2004
a(31)-a(32) from Donovan Johnson, Jun 03 2012

A124570 Array read by antidiagonals: T(d,k) (k >= 1, d = 1,2,3,4,5,6,...) = smallest semiprime s of k (not necessarily consecutive) semiprimes in arithmetic progression with common difference d, or 0 if there is no such arithmetic progression.

Original entry on oeis.org

4, 4, 4, 4, 9, 4, 4, 4, 33, 4, 4, 6, 91, 0, 4, 4, 6, 115, 213, 0, 4, 4, 4, 6, 0, 213, 0, 4, 4, 4, 4, 111, 0, 1383, 0, 4, 4, 14, 9, 0, 201, 0, 3091, 0, 4, 4, 6, 51, 203, 0, 201, 0, 8129, 0, 4, 4, 6, 6, 0, 1333, 0, 481, 0, 0, 0, 4, 4, 4, 77, 69, 0, 1333, 0, 5989, 0, 0, 0, 4
Offset: 1

Views

Author

Jonathan Vos Post, Nov 04 2006

Keywords

Comments

Comment from Hugo van der Sanden Aug 14 2021: (Start)
Row d=12 starts 4 9 9 10 10 469 3937 7343 7343 44719 78937 78937 78937 78937 55952333 233761133 597191343199.
Row d=18 starts 4 4 15 15 15 695 695 1727 7711 13951 13951 46159 400847 400847 400847 65737811 13388955301 934046384293.
Row d=24 starts 4 9 9 10 10 793 4819 6415 7271 14069 14069 14069 31589 67344271 616851797 48299373047 48299373047 20302675273219.
Row d=30 starts 4 4 9 25 25 2779 2779 6347 6347 6347 10811 10811 87109 87109 87109 1513723 15009191 15009191 316612697 316612697 1275591688621.
Row d=36 starts 4 10 10 10 15 1333 3161 4997 6865 34885 142171 834863 1327447 35528747 720945097 63389173477 63389173477 16074207679897 41728758250241.
Row d=42 starts 4 4 9 35 35 2701 2987 2987 7729 26995 26995 185795 307553 708385 708385 708385 1090198367 1819546069 20263042201 5672249016001.
Later terms in these rows are always >10^14. (End)
If p is the least prime that does not divide d, then T(d,k) <= p^2 if k >= p^2 (i.e. any a.p. of length >= p^2 with difference d contains a term divisible by p^2, and the only semiprime divisible by p^2 is p^2). Thus every row is eventually 0. - Robert Israel, Aug 11 2024

Examples

			Array begins:
d.\...k=1.k=2.k=3.k=4.k=5..k=6..k=7..k=8....k=9..k=10.k=11..k=12.
0..|..4...4...4...4...4....4....4....4......4....4.....4.....4...
1..|..4...9...33..0...0....0....0....0......0....0.....0.....0....
2..|..4...4...91..213.213..1383.3091.8129...0....0.....0.....0.....
3..|..4...6...115.0...0....0....0....0......0....0.....0.....0.....
4..|..4...6...6...111.201..201..481..5989...0....0.....0.....0....
5..|..4...4...4...0...0....0....0....0......0....0.....0.....0.....
6..|..4...4...9...203.1333.1333.1333.2159...8309.18799.60499.60499
7..|..4...14..51..0...0....0....0....0......0....0.....0.....0.....
8..|..4...6...6...69..473..511..511..112697.0....0.....0.....0.....
9..|..4...6...77..0...0....0....0....0......0....0.....0.....0.....
10.|..4...4...15..289.289..289..1631.13501..0....0.....0.....0.....
11.|..4...4...4...0...0....0....0....0......0....0.....0.....0.....
Example for row 3: 115 = 5 * 23 is semiprime, 115+3 = 118 = 2 * 59 is semiprime and 115+3+3 = 121 = 11^2 is semiprime, so T(3,3) = 115.
		

Crossrefs

Semiprime analog of A124064.
Cf. A125025 (row lengths), A001358, A056809, A070552, A092125, A092126, A092127, A092128, A092129, A124064, A092209 (row d=2), A091016 (row d=6).

Formula

T(1,2)=A070552(1). T(1,3)=A056809(1). T(2,4)=A092126(1). T(2,5)=A092127(1). T(2,6)=A092128(1). T(2,7)=A092129(1). T(2,8)=A082919(1). T(3,2)=A123017(1). T(d,1)=A001358(1). - R. J. Mathar, Aug 05 2021

Extensions

Corrected and extended by R. J. Mathar, Nov 06 2006
Definition clarified by Robert Israel, Aug 11 2024

A241493 Primes p such that p + 4, p + 16, p + 64, p + 256 and p + 1024 are all semiprimes.

Original entry on oeis.org

1627, 2917, 3583, 4603, 5581, 6367, 6379, 8263, 9697, 12517, 12763, 13339, 14197, 15289, 16339, 16993, 17539, 17737, 18199, 19267, 19531, 20023, 28057, 28879, 29587, 32647, 33427, 34033, 34537, 35353, 35617, 37039, 37087, 37657, 37663, 42337, 43093, 47533, 48049
Offset: 1

Views

Author

K. D. Bajpai, Apr 24 2014

Keywords

Comments

The constants in the definition (4, 16, 64, 256 and 1024 ) are in geometric progression.

Examples

			1627 is prime and appears in the sequence because 1627+4 = 1631 = 7*233, 1627+16 = 1643 = 31*53, 1627+64 = 1691 = 19*89, 1627+256 = 1883 = 7*269 and 1627+1024 = 2651 = 11*241, which are all semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local a,b,d,e,f,k; k:=ithprime(n); a:=bigomega(k+4); b:=bigomega(k+16); d:=bigomega(k+64); e:=bigomega(k+256); f:=bigomega(k+1024); if a=2 and  b=2 and d=2 and  e=2 and f=2 then RETURN (k); fi; end: seq(KD(), n=1..10000);
  • Mathematica
    KD = {}; Do[t = Prime[n]; If[PrimeOmega[t + 4] == 2 && PrimeOmega[t + 16] == 2 && PrimeOmega[t + 64] == 2 && PrimeOmega[t + 256] == 2 && PrimeOmega[t + 1024] == 2, AppendTo[KD, t]], {n, 10000}]; KD
    (* For the b-file *) c = 0; Do[t = Prime[n]; If[PrimeOmega[t + 4] == 2 && PrimeOmega[t + 16] == 2 && PrimeOmega[t + 64] == 2 && PrimeOmega[t + 256] == 2 && PrimeOmega[t + 1024] == 2, c++; Print[c, "  ", t]], {n, 1,5*10^6}];
    Select[Prime[Range[5000]],Union[PrimeOmega[#+{4,16,64,256,1024}]] == {2}&] (* Harvey P. Dale, Nov 28 2017 *)

A241484 Primes p such that p+2 and p+4 are semiprime.

Original entry on oeis.org

2, 31, 47, 53, 83, 89, 139, 157, 181, 199, 211, 233, 263, 317, 337, 389, 409, 443, 449, 467, 541, 577, 587, 631, 677, 683, 719, 751, 787, 811, 839, 919, 947, 991, 1039, 1097, 1117, 1163, 1187, 1201, 1259, 1367, 1381, 1399, 1559, 1637, 1669, 1709, 1759, 1777, 1847
Offset: 1

Views

Author

K. D. Bajpai, Apr 23 2014

Keywords

Examples

			31 is prime and appears in the sequence because 31+2 = 33 = 3*11 and 31+4 = 35 = 5*7, which are semiprime.
53 is prime and appears in the sequence because 53+2 = 55 = 5*11 and 53+4 = 57 = 3*19, which are semiprime.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(2000)| IsSemiprime(p+2) and IsSemiprime(p+4)]; // Vincenzo Librandi, Apr 24 2014
  • Maple
    with(numtheory): KD:= proc() local a,b,d,k; k:=ithprime(n); a:=bigomega(k+2);b:=bigomega(k+4); if a=2 and  b=2 then RETURN (k); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    KD = {}; Do[t = Prime[n];If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2,AppendTo[KD, t]], {n, 1000}]; KD

A241554 Semiprimes generated by the polynomial 2 * n^2 + 29.

Original entry on oeis.org

1711, 1829, 2077, 2479, 3071, 3901, 5029, 6527, 6757, 7471, 7967, 8479, 10397, 10981, 11581, 14141, 15167, 15517, 15871, 16591, 16957, 17701, 18079, 18847, 19631, 20837, 22927, 23791, 25567, 26941, 27877, 28829, 29797, 30287, 31279, 31781, 32287, 35941, 38117
Offset: 1

Views

Author

K. D. Bajpai, Apr 25 2014

Keywords

Comments

2 * n^2 + 29 is a well-known Legendre prime-producing polynomial which generates 29 distinct primes for n = 0, 1, ..., 28. For n = 29, it yields the first semiprime, 1711 = 29 * 59.
The number n = 185 is the least positive integer for which 2*n^2 + 29 = 68479 = 31 * 47 * 47 is not squarefree.

Examples

			2 * 30^2 + 29 = 1829 = 31 * 59, which is a semiprime and is a term.
2 * 35^2 + 29 = 2479 = 37 * 67, which is a semiprime and is a term.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A241554:= proc() local k; k:=2*x^2+29;if bigomega(k)=2 then RETURN (k); fi; end: seq(A241554(), x=0..500);
  • Mathematica
    A241554 = {}; Do[k = 2 * n^2 + 29; If[PrimeOmega[k] == 2, AppendTo[A241554, k]], {n,200}]; A241554
  • PARI
    s=[]; for(n=1, 200, t=2*n^2+29; if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 26 2014

A091016 a(n) is the least x such that the n values x+0, x+6, x+12, ..., x+6*(n-1) are all products of exactly two primes (i.e., semiprimes).

Original entry on oeis.org

4, 4, 9, 203, 1333, 1333, 1333, 2159, 8309, 18799, 60499, 60499, 186779, 186779, 186779, 12015573923, 12015573923, 6763513182767
Offset: 1

Views

Author

Don Reble, Feb 25 2004

Keywords

Comments

a(19) > 1.e14 if it exists. - Hugo van der Sanden, Aug 06 2021

Examples

			a(4)=203 because 203 = 7*29, 209 = 11*19, 215 = 5*43, 221 = 13*17.
		

Crossrefs

Cf. A082919, A092129. Row 6 of A124570.

Extensions

a(8) and a(9) corrected and a(18) from Donovan Johnson, Oct 01 2010
Showing 1-10 of 18 results. Next