A092208 Duplicate of A082919.
8129, 9983, 99443, 132077, 190937, 237449, 401429, 441677, 452639, 604487
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 668], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == 2 &] Select[Range[700],PrimeOmega[#]==PrimeOmega[#+2]==2&] (* Harvey P. Dale, Aug 20 2011 *) SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,700}],{1,,1}] [[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, May 29 2017 *)
is(n)=if(n%2==0, return(n==4)); bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Feb 21 2017
from sympy import factorint from itertools import count, islice def agen(): # generator of terms yield 4 nxt = 0 for k in count(5, 2): prv, nxt = nxt, sum(factorint(k+2).values()) if prv == nxt == 2: yield k print(list(islice(agen(), 53))) # Michael S. Branicky, Nov 26 2022
1381 is prime and appears in the sequence because 1381+2 = 1383 = 3*461, 1381+4 = 1385 = 5*277, 1381+6 = 1387 = 19*73, 1381+8 = 1389 = 3*463, 1381+10 = 1391 = 13*107 and 1381+12 = 1393 = 7*199, which are all semiprime.
with(numtheory): KD:= proc() local a,b,d,e,f,g,k; k:=ithprime(n); a:=bigomega(k+2); b:=bigomega(k+4); d:=bigomega(k+6); e:=bigomega(k+8); f:=bigomega(k+10); g:=bigomega(k+12); if a=2 and b=2 and d=2 and e=2 and f=2 and g=2then RETURN (k); fi; end: seq(KD(), n=1..200000);
KD = {}; Do[t = Prime[n]; If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2 && PrimeOmega[t + 6] == 2 && PrimeOmega[t + 8] == 2 && PrimeOmega[t + 10] == 2 && PrimeOmega[t + 12] == 2, AppendTo[KD, t]], {n, 200000}]; KD Select[Prime[Range[155000]],Union[PrimeOmega/@(#+2Range[6])]=={2}&] (* Harvey P. Dale, Dec 13 2018 *)
is(n)=if(n%3==1, isprime((n+2)/3) && isprime((n+8)/3) && bigomega(n+4)==2 && bigomega(n+10)==2, isprime((n+4)\3) && isprime((n+10)\3) && bigomega(n+2)==2 && bigomega(n+8)==2) && isprime(n) && bigomega(n+6)==2 && bigomega(n+12)==2 forprime(p=2,1e7,if(is(p),print1(p", "))) \\ Charles R Greathouse IV, Aug 25 2014
a(6)=4 because the 6 semiprimes in the progression ending at A096003(6)=221 are separated by an increment of 4: 201=3*67, 205=5*41, 209=11*19, 213=3*71, 217=7*31, 221=13*17.
Array begins: d.\...k=1.k=2.k=3.k=4.k=5..k=6..k=7..k=8....k=9..k=10.k=11..k=12. 0..|..4...4...4...4...4....4....4....4......4....4.....4.....4... 1..|..4...9...33..0...0....0....0....0......0....0.....0.....0.... 2..|..4...4...91..213.213..1383.3091.8129...0....0.....0.....0..... 3..|..4...6...115.0...0....0....0....0......0....0.....0.....0..... 4..|..4...6...6...111.201..201..481..5989...0....0.....0.....0.... 5..|..4...4...4...0...0....0....0....0......0....0.....0.....0..... 6..|..4...4...9...203.1333.1333.1333.2159...8309.18799.60499.60499 7..|..4...14..51..0...0....0....0....0......0....0.....0.....0..... 8..|..4...6...6...69..473..511..511..112697.0....0.....0.....0..... 9..|..4...6...77..0...0....0....0....0......0....0.....0.....0..... 10.|..4...4...15..289.289..289..1631.13501..0....0.....0.....0..... 11.|..4...4...4...0...0....0....0....0......0....0.....0.....0..... Example for row 3: 115 = 5 * 23 is semiprime, 115+3 = 118 = 2 * 59 is semiprime and 115+3+3 = 121 = 11^2 is semiprime, so T(3,3) = 115.
1627 is prime and appears in the sequence because 1627+4 = 1631 = 7*233, 1627+16 = 1643 = 31*53, 1627+64 = 1691 = 19*89, 1627+256 = 1883 = 7*269 and 1627+1024 = 2651 = 11*241, which are all semiprime.
with(numtheory): KD:= proc() local a,b,d,e,f,k; k:=ithprime(n); a:=bigomega(k+4); b:=bigomega(k+16); d:=bigomega(k+64); e:=bigomega(k+256); f:=bigomega(k+1024); if a=2 and b=2 and d=2 and e=2 and f=2 then RETURN (k); fi; end: seq(KD(), n=1..10000);
KD = {}; Do[t = Prime[n]; If[PrimeOmega[t + 4] == 2 && PrimeOmega[t + 16] == 2 && PrimeOmega[t + 64] == 2 && PrimeOmega[t + 256] == 2 && PrimeOmega[t + 1024] == 2, AppendTo[KD, t]], {n, 10000}]; KD (* For the b-file *) c = 0; Do[t = Prime[n]; If[PrimeOmega[t + 4] == 2 && PrimeOmega[t + 16] == 2 && PrimeOmega[t + 64] == 2 && PrimeOmega[t + 256] == 2 && PrimeOmega[t + 1024] == 2, c++; Print[c, " ", t]], {n, 1,5*10^6}]; Select[Prime[Range[5000]],Union[PrimeOmega[#+{4,16,64,256,1024}]] == {2}&] (* Harvey P. Dale, Nov 28 2017 *)
31 is prime and appears in the sequence because 31+2 = 33 = 3*11 and 31+4 = 35 = 5*7, which are semiprime. 53 is prime and appears in the sequence because 53+2 = 55 = 5*11 and 53+4 = 57 = 3*19, which are semiprime.
IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(2000)| IsSemiprime(p+2) and IsSemiprime(p+4)]; // Vincenzo Librandi, Apr 24 2014
with(numtheory): KD:= proc() local a,b,d,k; k:=ithprime(n); a:=bigomega(k+2);b:=bigomega(k+4); if a=2 and b=2 then RETURN (k); fi; end: seq(KD(), n=1..1000);
KD = {}; Do[t = Prime[n];If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2,AppendTo[KD, t]], {n, 1000}]; KD
2 * 30^2 + 29 = 1829 = 31 * 59, which is a semiprime and is a term. 2 * 35^2 + 29 = 2479 = 37 * 67, which is a semiprime and is a term.
with(numtheory):A241554:= proc() local k; k:=2*x^2+29;if bigomega(k)=2 then RETURN (k); fi; end: seq(A241554(), x=0..500);
A241554 = {}; Do[k = 2 * n^2 + 29; If[PrimeOmega[k] == 2, AppendTo[A241554, k]], {n,200}]; A241554
s=[]; for(n=1, 200, t=2*n^2+29; if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 26 2014
a(4)=203 because 203 = 7*29, 209 = 11*19, 215 = 5*43, 221 = 13*17.
Comments