cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A241493 Primes p such that p + 4, p + 16, p + 64, p + 256 and p + 1024 are all semiprimes.

Original entry on oeis.org

1627, 2917, 3583, 4603, 5581, 6367, 6379, 8263, 9697, 12517, 12763, 13339, 14197, 15289, 16339, 16993, 17539, 17737, 18199, 19267, 19531, 20023, 28057, 28879, 29587, 32647, 33427, 34033, 34537, 35353, 35617, 37039, 37087, 37657, 37663, 42337, 43093, 47533, 48049
Offset: 1

Views

Author

K. D. Bajpai, Apr 24 2014

Keywords

Comments

The constants in the definition (4, 16, 64, 256 and 1024 ) are in geometric progression.

Examples

			1627 is prime and appears in the sequence because 1627+4 = 1631 = 7*233, 1627+16 = 1643 = 31*53, 1627+64 = 1691 = 19*89, 1627+256 = 1883 = 7*269 and 1627+1024 = 2651 = 11*241, which are all semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local a,b,d,e,f,k; k:=ithprime(n); a:=bigomega(k+4); b:=bigomega(k+16); d:=bigomega(k+64); e:=bigomega(k+256); f:=bigomega(k+1024); if a=2 and  b=2 and d=2 and  e=2 and f=2 then RETURN (k); fi; end: seq(KD(), n=1..10000);
  • Mathematica
    KD = {}; Do[t = Prime[n]; If[PrimeOmega[t + 4] == 2 && PrimeOmega[t + 16] == 2 && PrimeOmega[t + 64] == 2 && PrimeOmega[t + 256] == 2 && PrimeOmega[t + 1024] == 2, AppendTo[KD, t]], {n, 10000}]; KD
    (* For the b-file *) c = 0; Do[t = Prime[n]; If[PrimeOmega[t + 4] == 2 && PrimeOmega[t + 16] == 2 && PrimeOmega[t + 64] == 2 && PrimeOmega[t + 256] == 2 && PrimeOmega[t + 1024] == 2, c++; Print[c, "  ", t]], {n, 1,5*10^6}];
    Select[Prime[Range[5000]],Union[PrimeOmega[#+{4,16,64,256,1024}]] == {2}&] (* Harvey P. Dale, Nov 28 2017 *)

A289250 Primes p such that p + 4 is a semiprime.

Original entry on oeis.org

2, 5, 11, 17, 29, 31, 47, 53, 61, 73, 83, 89, 107, 137, 139, 151, 157, 173, 179, 181, 197, 199, 211, 233, 263, 283, 317, 331, 337, 367, 373, 389, 409, 433, 443, 449, 467, 523, 541, 547, 569, 577, 587, 593, 607, 619, 631, 677, 683, 691, 709, 719, 727, 733, 751, 787, 809, 811, 827
Offset: 1

Views

Author

Zak Seidov, Jun 29 2017

Keywords

Comments

Except for case p=5, p+4 is never a perfect square.
For p = {2, 11, 31, 73, 139, 433, 1759, 2017} p+4 is a product of two consecutive primes.

Examples

			2+4=6=2*3, 5+4=9=3*3, 11+4=15=3*5 (all semiprimes).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 150, PrimeOmega[# + 4] == 2 &] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=isprime(n) && issemi(n+4) \\ Charles R Greathouse IV, Jul 02 2017
Showing 1-2 of 2 results.