cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A241659 Primes p such that p^3 + 2 is semiprime.

Original entry on oeis.org

2, 11, 13, 17, 19, 23, 31, 41, 53, 59, 89, 101, 131, 137, 149, 193, 211, 223, 227, 229, 233, 239, 251, 271, 293, 317, 331, 359, 401, 449, 461, 557, 563, 571, 593, 599, 619, 641, 659, 677, 691, 719, 739, 751, 809, 821, 853, 929, 971, 991, 1009, 1013, 1039, 1051
Offset: 1

Views

Author

K. D. Bajpai, Apr 26 2014

Keywords

Examples

			11 is prime and appears in the sequence because 11^3 + 2 = 1333 = 31 * 43, which is a semiprime.
17 is prime and appears in the sequence because 17^3 + 2 = 4915 =  5 * 983, which is a semiprime.
37 is prime but does not appear in the sequence because 37^3 + 2 = 50655 =  3 * 5 * 11 * 983, which is not a semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local a, b, k; k:=ithprime(n); a:=bigomega(k^3+2); if a=2 then RETURN (k); fi; end: seq(KD(), n=1..500);
  • Mathematica
    A241659 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2, AppendTo[A241659, t]], {n, 500}]; A241659
    (*For the b-file*) c = 0; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2, c++; Print[c, "  ", t]], {n, 1,6*10^4}];
    Select[Prime[Range[200]],PrimeOmega[#^3+2]==2&] (* Harvey P. Dale, Feb 05 2025 *)
  • PARI
    s=[]; forprime(p=2, 1200, if(bigomega(p^3+2)==2, s=concat(s, p))); s \\ Colin Barker, Apr 27 2014

A241716 Primes p such that p^3 - 2 is semiprime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 41, 43, 47, 61, 79, 89, 101, 107, 139, 157, 181, 199, 239, 271, 307, 311, 331, 337, 347, 349, 379, 397, 409, 421, 431, 479, 487, 499, 521, 523, 541, 571, 607, 613, 641, 643, 661, 673, 701, 719, 761, 769, 811, 823, 829, 839, 877, 881, 883
Offset: 1

Views

Author

K. D. Bajpai, Apr 27 2014

Keywords

Examples

			11 is prime and appears in the sequence because 11^3 - 2 = 1329 = 3 * 443, which is a semiprime.
17 is prime and appears in the sequence because 17^3 - 2 = 4911 = 3 * 1637, which is a semiprime.
23 is prime but does not appear in the sequence because 23^3 - 2 = 12165 =  3 * 5 * 811, which is not a semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A241716:= proc() local k; k:=ithprime(x); if bigomega(k^3-2)=2 then RETURN (k); fi; end: seq(A241716(), x=1..500);
  • Mathematica
    A241716 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 - 2] == 2, AppendTo[A241716, t]], {n, 500}]; A241716
    Select[Prime[Range[200]],PrimeOmega[#^3-2]==2&] (* Harvey P. Dale, Dec 09 2018 *)

A241732 Primes p such that p^3 + 2 and p^3 - 2 are semiprime.

Original entry on oeis.org

2, 11, 13, 17, 41, 89, 101, 239, 271, 331, 571, 641, 719, 1051, 1231, 1321, 1549, 1559, 1721, 1741, 1831, 1993, 1999, 2029, 2311, 2459, 2749, 2837, 2861, 2939, 3389, 3467, 3671, 4049, 4111, 4273, 4787, 4919, 4969, 5657, 5689, 5861, 6221, 6679, 6691, 6829, 7109
Offset: 1

Views

Author

K. D. Bajpai, Apr 27 2014

Keywords

Examples

			11 is prime and appears in the sequence because 11^3 + 2 = 1333 = 31 * 43 and 11^3 - 2 = 1329 = 3 * 443, both are semiprime.
41 is prime and appears in the sequence because 41^3 + 2 = 68923 = 157 * 439 and 41^3 - 2 = 68919 = 3 * 22973, both are semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local k; k:=ithprime(n); if bigomega(k^3+2)=2 and bigomega(k^3-2)=2 then k; fi; end: seq(KD(), n=1..2000);
  • Mathematica
    A241732 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2 && PrimeOmega[t^3 - 2] == 2, AppendTo[A241732, t]], {n, 500}]; A241732
    Select[Prime[Range[1000]],PrimeOmega[#^3+2]==PrimeOmega[#^3-2]==2&] (* Harvey P. Dale, Jun 20 2019 *)
Showing 1-3 of 3 results.