cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092132 Indices k of Bernoulli numbers B(k) whose numerators are primes.

Original entry on oeis.org

10, 12, 14, 16, 18, 36, 42
Offset: 1

Views

Author

Eric W. Weisstein, Feb 23 2004

Keywords

Comments

No others with k <= 22100. - Eric W. Weisstein, Mar 01 2004
a(8) > 50000. - Robert Price, Oct 20 2013
a(8) > 300000. - Serge Batalov, Jun 27 2025

Crossrefs

Cf. A092133.

Programs

  • Mathematica
    Reap[For[n = 1, n <= 1000, n++, If[ PrimeQ[ Numerator[ BernoulliB[n]]], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2012 *)
    Select[Range[50],PrimeQ[Numerator[BernoulliB[#]]]&] (* Harvey P. Dale, Sep 30 2019 *)

A132184 Numbers k such that the numerator of the Bernoulli number B(2k) ends with the digits 691.

Original entry on oeis.org

6, 21, 27, 321, 1266, 1527, 1821, 2526, 2576, 2721, 2950, 3126, 3246, 3426, 4206, 4236, 4821, 4926, 5286, 5721, 5946, 5950, 6100, 6351, 7018, 7138, 7172, 7386, 7806, 7931, 8037, 8790, 8796, 8826, 9021, 9048, 9426, 9478, 9726, 9921, 10221, 10326
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2007

Keywords

Comments

The numerator of BernoulliB(12) is 691. The sequence gives semi-indices of the 691-automorphic numerators in the BernoulliB(n) sequence. All 4 initial terms are multiples of 3. Note that Bernoulli numerators corresponding to the first two terms are the automorphic primes: 691 and 1520097643918070802691.

Examples

			6 is a term because BernoulliB(2*6) = -691/2730.
21 is a term because BernoulliB(2*21) = 1520097643918070802691/1806.
27 is a term because BernoulliB(2*27) = 29149963634884862421418123812691/798.
		

Crossrefs

Cf. A000367 (numerators of Bernoulli numbers B_2n).
Cf. A092132 (indices k of Bernoulli numbers B(k) whose numerators are primes).
Cf. A092133 (prime numerators of Bernoulli numbers).

Programs

  • Mathematica
    Do[ g=Numerator[ BernoulliB[ 2n ] ]; f=Mod[ Abs[ g ], 1000 ]; If[ f==691, Print[ n ] ], {n,1,1000}]
    Select[Range[10400],Mod[Abs[Numerator[BernoulliB[2#]]],1000]==691&] (* Harvey P. Dale, May 05 2019 *)

Extensions

a(5)-a(42) from Donovan Johnson, Sep 05 2008
Showing 1-2 of 2 results.