A092143 Cumulative product of all divisors of 1..n.
1, 2, 6, 48, 240, 8640, 60480, 3870720, 104509440, 10450944000, 114960384000, 198651543552000, 2582470066176000, 506164132970496000, 113886929918361600000, 116620216236402278400000, 1982543676018838732800000, 11562194718541867489689600000, 219681699652295482304102400000
Offset: 1
Keywords
Examples
a(6) = 1*2*3*2*4*5*2*3*6 = 8640.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..190
- Angelo B. Mingarelli, Abstract factorials, arXiv:0705.4299 [math.NT], 2007-2012.
Crossrefs
Programs
-
Magma
[(&*[j^Floor(n/j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
-
Maple
seq(sqrt(mul(k^numtheory[tau](k), k=1..n)), n=1..40); # Ridouane Oudra, Oct 31 2024
-
Mathematica
Reap[For[n = k = 1, k <= 25, k++, Do[n = n*d, {d, Divisors[k]}]; Sow[n]]][[2, 1]] (* Jean-François Alcover, Oct 30 2012 *) Table[Product[k^Floor[n/k], {k, 1, n}], {n, 1, 25}] (* Vaclav Kotesovec, Jun 24 2021 *) FoldList[Times, Times @@@ Divisors[Range[25]]] (* Paolo Xausa, Nov 06 2024 *)
-
PARI
my(z=1); for(i=1,25, fordiv(i,j,z*=j); print1(z, ", "))
-
SageMath
[product(j^(n//j) for j in range(1,n+1)) for n in range(1,31)] # G. C. Greubel, Feb 05 2024
Formula
a(n) = Product_{k=1..n} {floor(n/k)}!. This formula is due to Sebastian Martin Ruiz. - Peter Bala, Apr 15 2007; Formula corrected by R. J. Mathar, May 06 2008
Sum_{n>=1} 1/a(n) = A117871. - Amiram Eldar, Nov 17 2020
log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 20 2021
a(n) = Product_{k=1..n} k^floor(n/k). - Vaclav Kotesovec, Jun 24 2021
From Ridouane Oudra, Oct 31 2024: (Start)
a(n) = Product_{k=1..n} A007955(k).
a(n) = Product_{k=1..n} k^(tau(k)/2).
a(n) = sqrt(A175493(n)). (End)
Comments