cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092200 Expansion of (1+2x)/((1-x)(1-x^3)).

Original entry on oeis.org

1, 3, 3, 4, 6, 6, 7, 9, 9, 10, 12, 12, 13, 15, 15, 16, 18, 18, 19, 21, 21, 22, 24, 24, 25, 27, 27, 28, 30, 30, 31, 33, 33, 34, 36, 36, 37, 39, 39, 40, 42, 42, 43, 45, 45, 46, 48, 48, 49, 51, 51, 52, 54, 54, 55, 57, 57, 58, 60, 60, 61, 63, 63, 64, 66, 66, 67, 69, 69, 70, 72, 72
Offset: 0

Views

Author

Paul Barry, Feb 24 2004

Keywords

Comments

Partial sums of A010872(n+1).
Essentially the same as A130481. - R. J. Mathar, Jun 13 2008

Crossrefs

Programs

  • Maple
    a:=n->add(chrem( [n,j], [1,3] ),j=1..n):seq(a(n), n=1..72);# Zerinvary Lajos, Apr 08 2009
  • Mathematica
    f[n_]:=Mod[n,3];s=0;lst={};Do[AppendTo[lst,s+=f[n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
    CoefficientList[Series[(1+2x)/((1-x)(1-x^3)),{x,0,80}],x] (* or *) LinearRecurrence[{1,0,1,-1},{1,3,3,4},81] (* Harvey P. Dale, Sep 15 2011 *)

Formula

G.f.: (1+2x)/(1-x-x^3+x^4);
a(n) = 4/3 + n + 2*cos(Pi*2(n-1)/3)/3;
a(n) = Sum_{k=0..n} (k+1) mod 3;
a(n) = (n+1)*(n+2)/2 - 3*Sum_{k=0..n} floor((k+1)/3);
a(n) = 1 + n + Sum_{k=0..n} Jacobi(k, 3).
a(n) = a(n-1) + a(n-3) - a(n-4); a(0)=1, a(1)=3, a(2)=3, a(3)=4. - Harvey P. Dale, Sep 15 2011
a(n) = n + 1 when n + 2 is not a multiple of 3, and a(n) = n + 2 when n + 2 is a multiple of 3. - Dennis P. Walsh, Aug 06 2012
Sum_{n>=0} (-1)^n/a(n) = Pi/(3*sqrt(3)) + log(2)/3. - Amiram Eldar, Feb 14 2023