cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092295 Number of partitions of n with even number (or 0) 2's.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 10, 15, 20, 27, 36, 50, 65, 85, 111, 146, 186, 239, 304, 388, 488, 614, 767, 961, 1191, 1475, 1819, 2243, 2746, 3361, 4096, 4988, 6047, 7322, 8836, 10655, 12801, 15360, 18384, 21978, 26199, 31196, 37062, 43979, 52072, 61579, 72682
Offset: 0

Views

Author

Vladeta Jovovic, Feb 06 2004

Keywords

Examples

			a(5)=5 because the partitions [5],[4,1],[3,1,1],[2,2,1] and [1,1,1,1,1] of 5 have an even number of 2's ([3,2] and [2,1,1,1] do not qualify).
		

Crossrefs

Cf. A087787.

Programs

  • Maple
    g:=1/(1+x^2)/product(1-x^j,j=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..47); # Emeric Deutsch, Mar 30 2006
  • Mathematica
    nmax = 50; CoefficientList[Series[1/((1+x^2) * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)

Formula

a(n) = A000041(n)-a(n-2).
G.f.=1/[(1+x^2)*product(1-x^j, j=1..infinity)]. - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Oct 30 2015

Extensions

More terms from Benoit Cloitre, Feb 08 2004