A092295 Number of partitions of n with even number (or 0) 2's.
1, 1, 1, 2, 4, 5, 7, 10, 15, 20, 27, 36, 50, 65, 85, 111, 146, 186, 239, 304, 388, 488, 614, 767, 961, 1191, 1475, 1819, 2243, 2746, 3361, 4096, 4988, 6047, 7322, 8836, 10655, 12801, 15360, 18384, 21978, 26199, 31196, 37062, 43979, 52072, 61579, 72682
Offset: 0
Examples
a(5)=5 because the partitions [5],[4,1],[3,1,1],[2,2,1] and [1,1,1,1,1] of 5 have an even number of 2's ([3,2] and [2,1,1,1] do not qualify).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A087787.
Programs
-
Maple
g:=1/(1+x^2)/product(1-x^j,j=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..47); # Emeric Deutsch, Mar 30 2006
-
Mathematica
nmax = 50; CoefficientList[Series[1/((1+x^2) * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)
Formula
a(n) = A000041(n)-a(n-2).
G.f.=1/[(1+x^2)*product(1-x^j, j=1..infinity)]. - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Oct 30 2015
Extensions
More terms from Benoit Cloitre, Feb 08 2004