A062282
Number of permutations of n elements with an even number of fixed points.
Original entry on oeis.org
1, 0, 2, 2, 16, 64, 416, 2848, 22912, 205952, 2060032, 22659328, 271913984, 3534877696, 49488295936, 742324422656, 11877190795264, 201912243453952, 3634420382302208, 69053987263479808, 1381079745270120448, 29002674650671480832, 638058842314774675456
Offset: 0
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 04 2001
-
nn = 20; d = Exp[-x]/(1 - x); Range[0, nn]! CoefficientList[Series[Cosh[x] d, {x, 0, nn}], x] (* Geoffrey Critzer, Jan 14 2012 *)
Table[Sum[Sum[(-1)^j * n!/(j!*(2*k)!), {j, 0, n - 2*k}], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Aug 21 2017 *)
-
for(n=0,50, print1(sum(k=0,n\2, sum(j=0,n-2*k, (-1)^j*n!/(j!*(2*k)!))), ", ")) \\ G. C. Greubel, Aug 21 2017
A113979
Number of compositions of n with an even number of 1's.
Original entry on oeis.org
1, 0, 2, 1, 6, 6, 20, 28, 72, 120, 272, 496, 1056, 2016, 4160, 8128, 16512, 32640, 65792, 130816, 262656, 523776, 1049600, 2096128, 4196352, 8386560, 16781312, 33550336, 67117056, 134209536, 268451840, 536854528, 1073774592, 2147450880
Offset: 0
a(4)=6 because the compositions of 4 having an even number of 1's are 4,22,211,121,112 and 1111 (the other compositions of 4 are 31 and 13).
Cf.
A063376,
A006516,
A063083,
A100818,
A092295,
A111752,
A111753,
A111723,
A111724,
A088336,
A088506.
-
a:=proc(n) if n mod 2 = 0 then 2^(n-2)+2^((n-2)/2) else 2^(n-2)-2^((n-3)/2) fi end: seq(a(n),n=1..38); # Emeric Deutsch, Feb 01 2006
-
f[n_] := If[ EvenQ[n], 2^(n - 2) + 2^((n - 2)/2), 2^(n - 2) - 2^((n - 3)/2)]; Array[f, 34] (* Robert G. Wilson v, Feb 01 2006 *)
-
a(n) = n-=2; (n==-2) + 1<=0, (-1)^n << (n>>1)); \\ Kevin Ryde, May 02 2023
a(0)=1 prepended and formulas corrected by
Jason Yuen, Sep 09 2024
A265257
Number of odd singletons in all partitions of n (n>=0).
Original entry on oeis.org
0, 1, 0, 2, 2, 5, 5, 11, 13, 23, 28, 45, 57, 86, 108, 156, 199, 276, 350, 475, 601, 798, 1005, 1312, 1646, 2120, 2643, 3365, 4178, 5264, 6500, 8122, 9981, 12375, 15136, 18638, 22697, 27779, 33679, 40993, 49504, 59947, 72109
Offset: 0
a(6) = 5 because in [1,1,1,3], [1,2,3], [1,5] we have 1+2+2 odd singletons, while the other 8 partitions of 6 have no odd singletons.
-
g := x*(1-x+x^2)/((1-x^4)*mul(1-x^j, j = 1 .. 80)): gser := series(g, x = 0, 55): seq(coeff(gser, x, m), m = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> `if`(j=1 and i::odd, p+
[0, p[1]], p))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..80); # Alois P. Heinz, Jan 01 2016
-
nmax = 50; CoefficientList[Series[x*(1-x+x^2)/(1-x^4) * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)
A113980
Number of compositions of n with an odd number of 1's.
Original entry on oeis.org
1, 0, 3, 2, 10, 12, 36, 56, 136, 240, 528, 992, 2080, 4032, 8256, 16256, 32896, 65280, 131328, 261632, 524800, 1047552, 2098176, 4192256, 8390656, 16773120, 33558528, 67100672, 134225920, 268419072, 536887296, 1073709056, 2147516416
Offset: 1
a(4)=2 because only the compositions 31 and 13 of 4 have an odd number of 1's (the other compositions are 4,22,211,121,112 and 1111).
Cf.
A020522,
A007582,
A063083,
A100818,
A092295,
A111752,
A111753,
A111723,
A111724,
A088336,
A088506.
-
a:=proc(n) if n mod 2 = 0 then 2^(n-2)-2^((n-2)/2) else 2^(n-2)+2^((n-3)/2) fi end: seq(a(n),n=1..38); # Emeric Deutsch, Feb 01 2006
-
f[n_] := If[EvenQ[n], 2^(n - 2) - 2^((n - 2)/2), 2^(n - 2) + 2^((n - 3)/2)]; Array[f, 34] (* Robert G. Wilson v, Feb 01 2006 *)
Showing 1-4 of 4 results.
Comments