A092311 Total number of largest parts in all partitions of n into odd parts.
1, 2, 4, 5, 7, 10, 12, 14, 19, 23, 26, 33, 38, 44, 56, 63, 71, 88, 99, 114, 138, 155, 176, 208, 237, 269, 314, 357, 402, 468, 529, 594, 686, 772, 873, 999, 1119, 1260, 1431, 1608, 1804, 2039, 2284, 2554, 2884, 3219, 3590, 4032, 4493, 5011, 5603, 6231, 6928
Offset: 1
Examples
Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6+1+2+1=10.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[(x^(2*n - 1)/(1 - x^(2*n - 1))) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *) lpp[k_]:=Module[{c=Max[k]},Count[k,c]]; Table[Total[lpp/@Select[IntegerPartitions[ n],AllTrue[ #,OddQ]&]],{n, 60}] (* Harvey P. Dale, Apr 24 2023 *)
Formula
G.f.: Sum((x^(2*n-1)/(1-x^(2*n-1)))/Product((1-x^(2*k-1)), k=1..n), n=1..infinity).
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 07 2019
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004