cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092342 a(n) = sigma_3(3n+1).

Original entry on oeis.org

1, 73, 344, 1134, 2198, 4681, 6860, 11988, 15751, 25112, 29792, 44226, 50654, 73710, 79508, 109512, 117993, 160454, 167832, 219510, 226982, 299593, 300764, 390096, 389018, 500780, 493040, 620298, 619164, 779220, 756112, 934416, 912674, 1149823, 1092728
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Examples

			q + 73*q^4 + 344*q^7 + 1134*q^10 + 2198*q^13 + 4681*q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[3,3*Range[0,40]+1] (* Harvey P. Dale, Apr 22 2019 *)
  • PARI
    {a(n) = if(n<0, 0, sigma(3*n+1, 3))} /* Michael Somos, Aug 22 2007 */

Formula

Expansion of q^(-1/3) * c(q) * (c(q)^3 + b(q)^3 / 3) in powers of q where b(), c() are cubic AGM functions. - Michael Somos, Aug 22 2007
If b(3*n) = 0, b(3*n+1) = a(n), b(3*n+2) = A092343(n), then b(n) is multiplicative with b(3^e) = 0^e, b(p^e) = (p^(3*e+3) - 1) / (p^3 - 1) otherwise. - Michael Somos, Aug 22 2007
a(n) = A000731(n) + 81*A033690(n-1). - Michael Somos, Aug 22 2007
Sum_{k=0..n} a(k) ~ (20*zeta(4)/3) * n^4. - Amiram Eldar, Dec 12 2023

A092341 a(0)=1, a(n) = sigma_3(3n).

Original entry on oeis.org

1, 28, 252, 757, 2044, 3528, 6813, 9632, 16380, 20440, 31752, 37296, 55261, 61544, 86688, 95382, 131068, 137592, 183960, 192080, 257544, 260408, 335664, 340704, 442845, 441028, 553896, 551881, 703136, 682920, 858438, 834176, 1048572, 1008324, 1238328, 1213632
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Crossrefs

Trisection of A001158.

Programs

  • Mathematica
    Join[{1},DivisorSigma[3,3*Range[40]]] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n) = if(n < 1, 1, sigma(3*n, 3)); \\ Amiram Eldar, Dec 12 2023

Formula

Sum_{k=1..n} a(k) ~ (83*zeta(4)/12) * n^4. - Amiram Eldar, Dec 12 2023
Showing 1-2 of 2 results.