cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000731 Expansion of Product (1 - x^k)^8 in powers of x.

Original entry on oeis.org

1, -8, 20, 0, -70, 64, 56, 0, -125, -160, 308, 0, 110, 0, -520, 0, 57, 560, 0, 0, 182, -512, -880, 0, 1190, -448, 884, 0, 0, 0, -1400, 0, -1330, 1000, 1820, 0, -646, 1280, 0, 0, -1331, -2464, 380, 0, 1120, 0, 2576, 0, 0, -880, 1748, 0, -3850, 0, -3400, 0, 2703, 4160, -2500, 0, 3458
Offset: 0

Views

Author

Keywords

Comments

Number 22 of the 74 eta-quotients listed in Table I of Martin (1996).
Denoted by g_4(q) in Cynk and Hulek in Remark 3.4 on page 12 as the unique level 9 form of weight 4.
This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012
a(n)=0 if and only if A033687(n)=0 (see the Han-Ono paper). - Emeric Deutsch, May 16 2008
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 8*x + 20*x^2 - 70*x^3 + 64*x^4 + 56*x^5 - 125*x^6 - 160*x^7 + ...
G.f. = q - 8*q^4 + 20*q^7 - 70*q^13 + 64*q^16 + 56*q^19 - 125*q^25 - ...
		

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.

Programs

  • Magma
    Basis( CuspForms( Gamma0(9), 4), 56) [1]; /* Michael Somos, Dec 09 2013 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^8, {x, 0, n}]; (* Michael Somos, Sep 29 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^8, {x, 0, n}]; (* Michael Somos, Dec 09 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^8, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%3==2, if( e%2, 0, (-1)^(e/2) * p^(3*e/2)), forstep( y=sqrtint(4*p\3), sqrtint(p\3), -1, if( issquare( 4*p - 3*y^2, &x), if( x%3!=2, x=-x); break)); a0=1; a1 = y = x * (x^2 - 3*p); for( i=2, e, x = y*a1 - p^3*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 23 2006 */
    
  • Sage
    CuspForms( Gamma0(9), 4, prec=56).0; # Michael Somos, May 28 2013
    

Formula

Expansion of q^(-1/3) * eta(q)^8 in powers of q.
Expansion of q^(-1/3) * b(q)^3 * c(q) / 3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 08 2006
Expansion of q^(-1) * b(q) * c(q)^3 / 27 in powers of q^3 where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 08 2006
Euler transform of period 1 sequence [ -8, ...].
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-1)^(e/2) * p^(3*e/2) if p == 2 (mod 3), b(p^e) = b(p)*b(p^(e-1)) - b(p^(e-2))*p^3 if p == 1 (mod 3) where b(p) = (x^2 - 3*p)*x, 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Michael Somos, Aug 23 2006
Given g.f. A(x), then B(x) = x * A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 - u * w * (u + 16 * w). - Michael Somos, Feb 19 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 29 2011
G.f.: Product_{k>0} (1 - x^k)^8.
a(2*n) = A153728(n). - Michael Somos, Sep 29 2011
a(4*n + 1) = -8 * a(n). - Michael Somos, Dec 06 2004
a(4*n + 3) = a(16*n + 13) = 0. - Michael Somos, Oct 19 2005
A092342(n) = a(n) + 81*A033690(n-1). - Michael Somos, Aug 22 2007
Sum_{n>=0} a(n) * q^(3*n + 1) = (Sum_{i,j,k in Z} (i-j) * (j-k) * (k-i) * q^((i*i + j*j + k*k) / 2)) / 2 where 0 = i+j+k, i == 1 (mod 3), j == 2 (mod 3), and k == 0 (mod 3). - Michael Somos, Sep 22 2014
a(0) = 1, a(n) = -(8/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-8*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 2 (mod 3). Then a( M^2*n + (M^2 - 1)/3 ) = (-1)^k*M^3*a(n). See Cooper et al., Theorem 1. - Peter Bala, Dec 01 2020
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p^3)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(3*e+3) - ((x-sqrt(-3)*y)/2)^(3*e+3))/(((x+sqrt(-3)*y)/2)^3 - ((x-sqrt(-3)*y)/2)^3) if p == 1 (mod 3) where 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Jianing Song, Mar 19 2022

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009

A033690 Theta series of A2[hole]^4.

Original entry on oeis.org

1, 4, 14, 28, 57, 84, 148, 196, 312, 364, 546, 624, 910, 988, 1352, 1456, 1974, 2072, 2710, 2800, 3705, 3724, 4816, 4788, 6188, 6076, 7658, 7644, 9620, 9352, 11536, 11284, 14183, 13468, 16542, 15996, 19864, 18928, 22820, 21904, 26880, 25284
Offset: 0

Views

Author

Keywords

Examples

			q^4 + 4*q^7 + 14*q^10 + 28*q^13 + 57*q^16 + 84*q^19 + 148*q^22 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111, Eq (63)^4.

Crossrefs

Cf. A033685.

Programs

  • Mathematica
    s = (QPochhammer[q^3]^3/QPochhammer[q])^4 + O[q]^45; CoefficientList[s, q] (* Jean-François Alcover, Nov 04 2015 *)
  • PARI
    {a(n) = local(A); if(n<0, 0, A = x*O(x^n); polcoeff( (eta(x^3 +A)^3 / eta(x +A) )^4, n))} /* Michael Somos, Aug 22 2007 */

Formula

a(n) = A033685^4.
Expansion of q^(-4/3) * (eta(q^3)^3 / eta(q))^4 in powers of q. - Michael Somos, Aug 22 2007
Expansion of c(q)^4 / (81 * q^(4/3)) in powers of q where c() is a cubic AGM function. - Michael Somos, Aug 22 2007
Euler transform of period 3 sequence [ 4, 4, -8, ...]. - Michael Somos, Aug 22 2007
A092342(n) = A000731(n) + 81*a(n-1). - Michael Somos, Aug 22 2007

A092341 a(0)=1, a(n) = sigma_3(3n).

Original entry on oeis.org

1, 28, 252, 757, 2044, 3528, 6813, 9632, 16380, 20440, 31752, 37296, 55261, 61544, 86688, 95382, 131068, 137592, 183960, 192080, 257544, 260408, 335664, 340704, 442845, 441028, 553896, 551881, 703136, 682920, 858438, 834176, 1048572, 1008324, 1238328, 1213632
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Crossrefs

Trisection of A001158.

Programs

  • Mathematica
    Join[{1},DivisorSigma[3,3*Range[40]]] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n) = if(n < 1, 1, sigma(3*n, 3)); \\ Amiram Eldar, Dec 12 2023

Formula

Sum_{k=1..n} a(k) ~ (83*zeta(4)/12) * n^4. - Amiram Eldar, Dec 12 2023

A092343 a(n) = sigma_3(3n+2).

Original entry on oeis.org

9, 126, 585, 1332, 3096, 4914, 9198, 12168, 19782, 24390, 37449, 43344, 61740, 68922, 97236, 103824, 141759, 148878, 201240, 205380, 268128, 276948, 358722, 357912, 455886, 458208, 589806, 571788, 715572, 704970, 888264, 864360, 1061937, 1030302, 1285830
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Examples

			G.f. = 9 + 126*x + 585*x^2 + 1332*x^3 + 3096*x^4 + 4914*x^5 + 9198*x^6 + 12168*x^7 + ...
G.f. = 9*q^2 + 126*q^5 + 585*q^8 + 1332*q^11 + 3096*q^14 + 4914*q^17 + 9198*q^20 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[3,3n+2],{n,0,40}] (* Harvey P. Dale, Jul 02 2011 *)
  • PARI
    {a(n) = if( n<0, 0, sigma( 3*n + 2, 3))}; /* Michael Somos, May 30 2012 */

Formula

Expansion of q^(-2/3) * (a(q) * c(q))^2 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, May 30 2012
Convolution square of A144614. - Michael Somos, May 30 2012
Sum_{k=0..n} a(k) ~ (20*zeta(4)/3) * n^4. - Amiram Eldar, Dec 12 2023
Showing 1-4 of 4 results.