A092405 a(n) = tau(n) + tau(n+1), where tau(n) = A000005(n), the number of divisors of n.
3, 4, 5, 5, 6, 6, 6, 7, 7, 6, 8, 8, 6, 8, 9, 7, 8, 8, 8, 10, 8, 6, 10, 11, 7, 8, 10, 8, 10, 10, 8, 10, 8, 8, 13, 11, 6, 8, 12, 10, 10, 10, 8, 12, 10, 6, 12, 13, 9, 10, 10, 8, 10, 12, 12, 12, 8, 6, 14, 14, 6, 10, 13, 11, 12, 10, 8, 10, 12, 10, 14, 14, 6, 10, 12, 10, 12, 10, 12, 15, 9, 6, 14, 16
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
Total /@ Partition[Array[DivisorSigma[0, #] &, 85], 2, 1] (* Michael De Vlieger, Sep 18 2018 *)
-
PARI
for(i=1,60,print1(","sigma(i,0)+sigma(i+1,0)))
-
PARI
A092405(n) = (numdiv(n)+numdiv(1+n)); \\ Antti Karttunen, Oct 07 2017
Formula
a(n) = A346562(n+1,n). - Omar E. Pol, Jul 23 2021
Extensions
Extended by Ray Chandler, Mar 05 2010
Comments