cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A137179 a(n) = the smallest positive integer m such that d(m) + d(m+1) = n, where d(m) is the number of positive divisors of m. (a(n) is the smallest m where A092405(m) = n.)

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 15, 20, 24, 39, 35, 59, 80, 84, 195, 167, 120, 119, 224, 239, 399, 335, 440, 359, 360, 480, 1520, 539, 899, 719, 1224, 720, 840, 1079, 3135, 1259, 5183, 1260, 2400, 2160, 1680, 1679, 9408, 2880, 7056, 2639, 3024, 2520, 6240, 2519, 7055, 6929
Offset: 3

Views

Author

Leroy Quet, May 11 2008

Keywords

Crossrefs

Cf. A092405.

Programs

  • Maple
    N:= 100: # for a(3)..a(N)
    V:= Array(3..N):
    count:= 0: dp:= 1:
    for m from 1 while count < N-2 do
      d:= dp; dp:= numtheory:-tau(m+1);
      v:= d+dp;
      if v <= N and V[v] = 0 then
        V[v]:= m;
        count:= count+1;
      fi
    od:
    convert(V,list); # Robert Israel, Mar 31 2021
  • Mathematica
    a = {}; For[n = 3, n < 60, n++, i = 1; While[ ! DivisorSigma[0, i] + DivisorSigma[0, i + 1] == n, i++ ]; AppendTo[a, i]]; a (* Stefan Steinerberger, May 18 2008 *)

Extensions

More terms from Stefan Steinerberger, May 18 2008

A307704 Expansion of (1/(1 - x)) * Sum_{k>=1} (-x)^k/(1 - (-x)^k).

Original entry on oeis.org

-1, 1, -1, 2, 0, 4, 2, 6, 3, 7, 5, 11, 9, 13, 9, 14, 12, 18, 16, 22, 18, 22, 20, 28, 25, 29, 25, 31, 29, 37, 35, 41, 37, 41, 37, 46, 44, 48, 44, 52, 50, 58, 56, 62, 56, 60, 58, 68, 65, 71, 67, 73, 71, 79, 75, 83, 79, 83, 81, 93, 91, 95, 89, 96, 92, 100, 98, 104, 100, 108
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2019

Keywords

Crossrefs

Cf. A001620 (gamma), A002162.

Programs

  • Mathematica
    nmax = 70; Rest[CoefficientList[Series[1/(1 - x) Sum[(-x)^k/(1 - (-x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(-1)^k DivisorSigma[0, k], {k, 1, n}], {n, 1, 70}]
    Accumulate[Array[(-1)^#*DivisorSigma[0, #] &, 70]] (* Amiram Eldar, Oct 14 2022 *)

Formula

a(n) = Sum_{k=1..n} (-1)^k*A000005(k).
a(n) = n*log(n)/2 + (gamma - log(2) - 1/2)*n + O(n^(131/416 + eps)) (Tóth, 2017). - Amiram Eldar, Oct 14 2022

A069904 Number of prime factors of n-th triangular number (with multiplicity).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 5, 4, 3, 3, 3, 4, 3, 2, 4, 5, 3, 4, 5, 3, 3, 3, 5, 6, 3, 3, 5, 4, 2, 3, 5, 4, 3, 3, 3, 5, 4, 2, 5, 6, 4, 4, 4, 3, 4, 5, 5, 5, 3, 2, 4, 4, 2, 4, 8, 7, 4, 3, 3, 4, 4, 3, 5, 5, 2, 4, 5, 4, 4, 3, 5, 8, 5, 2, 4, 5, 3, 3, 5, 4, 4, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Examples

			A000217(8) = 8*(8+1)/2 = 36 = 2*2*3*3, therefore a(8) = 4.
		

Crossrefs

Programs

Formula

a(n) = A001222(A000217(n)).
From Antti Karttunen, Oct 07 2017: (Start)
a(n) = (A001222(n)+A001222(n+1))-1.
a(n) = A001222(A278253(n)). (End)
From Alois P. Heinz, Aug 05 2019: (Start)
a(n) = 2 <=> n in { A164977 }.
a(n) = 3 <=> n in { A108815 }.
a(n) = 4 <=> n in { A114435 }.
a(n) = 5 <=> n in { A114436 }.
a(n) = 6 <=> n in { A114437 }.
a(n) = 7 <=> n in { A240527 }.
a(n) = 8 <=> n in { A240528 }.
a(n) = 9 <=> n in { A240529 }.
a(n) = 10 <=> n im { A101745 }. (End)

A092403 a(n) = sigma(n) + sigma(n+1).

Original entry on oeis.org

4, 7, 11, 13, 18, 20, 23, 28, 31, 30, 40, 42, 38, 48, 55, 49, 57, 59, 62, 74, 68, 60, 84, 91, 73, 82, 96, 86, 102, 104, 95, 111, 102, 102, 139, 129, 98, 116, 146, 132, 138, 140, 128, 162, 150, 120, 172, 181, 150, 165, 170, 152, 174, 192, 192, 200, 170, 150, 228, 230
Offset: 1

Views

Author

Jon Perry, Mar 22 2004

Keywords

Comments

a(n) is the area of the terrace in the level 1 of the polycube called "tower" described in A221529 where the longest side of its base is equal to n + 1, thus a(n) has a symmetric representation. - Omar E. Pol, Jul 22 2021

Crossrefs

Programs

  • Mathematica
    Total/@Partition[DivisorSigma[1,Range[70]],2,1] (* Harvey P. Dale, Feb 19 2018 *)
  • PARI
    for(i=1,60,print1(","sigma(i)+sigma(i+1)))

Formula

a(n) = A346533(n+1,n). - Omar E. Pol, Jul 22 2021

A350593 Numbers k such that tau(k) + tau(k+1) = 6, where tau is the number of divisors function A000005.

Original entry on oeis.org

5, 6, 7, 10, 13, 22, 37, 46, 58, 61, 73, 82, 106, 157, 166, 178, 193, 226, 262, 277, 313, 346, 358, 382, 397, 421, 457, 466, 478, 502, 541, 562, 586, 613, 661, 673, 718, 733, 757, 838, 862, 877, 886, 982, 997, 1018, 1093, 1153, 1186, 1201, 1213, 1237, 1282
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 08 2022

Keywords

Comments

Since tau(k) + tau(k+1) = 6, (tau(k), tau(k+1)) must be (1,5), (2,4), (3,3), (4,2), or (5,1); of these, (1,5) and (5,1) are impossible (tau(m) = 1 only for m=1, but then neither m+1 nor m-1 would have 5 divisors), and (3,3) is also impossible (both k and k+1 would have to be squares of primes), so (tau(k), tau(k+1)) must be either (2,4) or (4,2).
For every prime p, tau(p) = 2. For every semiprime s, tau(s) = 4, with the exception of the squares of primes; for p prime, tau(p^2) = 3, since the divisors of p^2 are 1, p, and p^2.
The only numbers that have exactly 4 divisors but are not semiprimes are the cubes of primes; for prime p, the divisors of p^3 are 1, p, p^2, and p^3.
As a result, this sequence consists of:
(1) the primes p such that (p+1)/2 is prime (A005383), with the exception of p=3 (since p+1 = 4 has 3 divisors, not 4),
(2) semiprimes of the form prime - 1 (A077065), with the exception of the semiprime 4 (since it does not have 4 divisors), and
(3) the special case k = 7, since it is the unique prime p such that p+1 has 4 divisors but is not a semiprime.
For all k > 4, tau(k) + tau(k+1) >= 6; for k = 1..4, tau(k) + tau(k+1) = 3, 4, 5, 5.

Examples

			   k  tau(k)  tau(k+1)  tau(k) + tau(k+1)
  --  ------  --------  -----------------
   1     1        2         1 + 2 = 3
   2     2        2         2 + 2 = 4
   3     2        3         2 + 3 = 5
   4     3        2         3 + 2 = 5
   5     2        4         2 + 4 = 6   so   5 = a(1)
   6     4        2         4 + 2 = 6   so   6 = a(2)
   7     2        4         2 + 4 = 6   so   7 = a(3)
   8     4        3         4 + 3 = 7
   9     3        4         3 + 4 = 7
  10     4        2         4 + 2 = 6   so  10 = a(4)
  11     2        6         2 + 6 = 8
  12     6        2         6 + 2 = 8
  13     2        4         2 + 4 = 6   so  13 = a(5)
		

Crossrefs

Numbers k such that Sum_{j=0..N-1} tau(k+j) = 2*Sum_{k=1..N} tau(k): A000040 (N=1), (this sequence) (N=2), A350675 (N=3), A350686 (N=4), A350699 (N=5), A350769 (N=6), A350773 (N=7), A350854 (N=8).

Programs

  • Mathematica
    Select[Range[1300], Plus @@ DivisorSigma[0, # + {0, 1}] == 6 &] (* Amiram Eldar, Jan 08 2022 *)
    Position[Total/@Partition[DivisorSigma[0,Range[1300]],2,1],6]//Flatten (* Harvey P. Dale, Sep 03 2022 *)
  • PARI
    isok(k) = numdiv(k) + numdiv(k+1) == 6; \\ Michel Marcus, Jan 08 2022
    
  • Python
    from itertools import count, islice
    from sympy import divisor_count
    def A350093_gen(): # generator of terms
        a, b = divisor_count(1), divisor_count(2)
        for k in count(1):
            if a + b == 6:
                yield k
            a, b = b, divisor_count(k+2)
    A350093_list = list(islice(A350093_gen(),12)) # Chai Wah Wu, Jan 11 2022

Formula

{ k : tau(k) + tau(k+1) = 6 }.
UNION(A005383 \ {3}, A077065 \ {4}, {7}).
a(n) = A164977(n+1) for n>=4. - Hugo Pfoertner, Jan 08 2022

A175143 a(1)=1. a(n) = the smallest integer > a(n-1) such that d(a(n))+d(a(n)+1) > d(a(n-1))+d(a(n-1)+1), where d(m) = the number of divisors of m.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 15, 20, 24, 35, 59, 80, 84, 119, 224, 239, 335, 359, 360, 480, 539, 719, 720, 840, 1079, 1259, 1260, 1679, 2519, 4199, 5039, 5040, 6720, 7559, 9360, 10079, 10080, 15119, 20159, 25199, 25200, 27719, 32759, 43680, 50399, 55439, 75599
Offset: 1

Views

Author

Leroy Quet, Feb 24 2010

Keywords

Comments

Those n where A092405(n) sets records.
Nicolas proved that: (1) Except for a finite number of terms, if k is in this sequence either k or k+1 is a largely composite number (A067128). (2) Except for a finite number of terms if k is a highly composite number (A002182) then k-1 is a term of this sequence. Apparently the only exceptions of (1) are 15, 80, 224, 6720, and 9360, and the only exceptions of (2) are 1, 24, 48, 180, 840, and 45360. - Amiram Eldar, Aug 24 2019

Crossrefs

Programs

  • Maple
    A092405 := proc(n) numtheory[tau](n)+numtheory[tau](n+1) ; end proc: read("transforms") ; a092405 :=[seq(A092405(n),n=1..90000)] ; RECORDS(a092405)[2] ; # R. J. Mathar, Mar 05 2010
  • Mathematica
    d1 = 1; dm = 0; s = {}; Do[d2 = DivisorSigma[0, n]; d = d1 + d2; If[d > dm, dm = d; AppendTo[s, n - 1]]; d1 = d2, {n, 2, 80000}]; s (* Amiram Eldar, Aug 24 2019 *)
    smi[n_]:=Module[{k=n+1,ds=DivisorSigma[0,n]+DivisorSigma[0,n+1]},While[ DivisorSigma[ 0,k]+DivisorSigma[0,k+1]<=ds,k++];k]; NestList[smi,1,50] (* Harvey P. Dale, Apr 25 2020 *)

Extensions

Extended by Ray Chandler, Mar 05 2010
Terms beyond 80 from R. J. Mathar, Mar 05 2010

A346562 Irregular triangle read by rows in which row n lists the first n - 2 terms of A000005 together with the sum of A000005(n-1) and A000005(n), with a(1) = 1.

Original entry on oeis.org

1, 3, 1, 4, 1, 2, 5, 1, 2, 2, 5, 1, 2, 2, 3, 6, 1, 2, 2, 3, 2, 6, 1, 2, 2, 3, 2, 4, 6, 1, 2, 2, 3, 2, 4, 2, 7, 1, 2, 2, 3, 2, 4, 2, 4, 7, 1, 2, 2, 3, 2, 4, 2, 4, 3, 6, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 8, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 8, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 6
Offset: 1

Views

Author

Omar E. Pol, Jul 23 2021

Keywords

Comments

T(n,k) is the total number of divisors related to the terraces that are in the k-th level that contains terraces starting from the base of the symmetric tower described in A221529.

Examples

			Triangle begins:
1;
3;
1, 4;
1, 2, 5;
1, 2, 2, 5;
1, 2, 2, 3, 6;
1, 2, 2, 3, 2, 6;
1, 2, 2, 3, 2, 4, 6;
1, 2, 2, 3, 2, 4, 2, 7;
1, 2, 2, 3, 2, 4, 2, 4, 7;
1, 2, 2, 3, 2, 4, 2, 4, 3, 6;
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 8;
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 8;
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 6;
...
		

Crossrefs

The length of row n is A028310(n-1).
Row sums give A006218, n >= 1.
Leading diagonal gives A092405.
Other diagonals give A000005.
Column 1 gives the absolute values of A260196.
Companion of A346533.
Showing 1-7 of 7 results.