cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092435 Prime factorials divided by their corresponding primorials.

Original entry on oeis.org

1, 1, 4, 24, 17280, 207360, 696729600, 12541132800, 115880067072000, 1366643159020339200000, 40999294770610176000000, 1854768736099424576471040000000, 109950690675973888893203251200000000, 4617929008390903333514536550400000000, 420600974084243475616503989010432000000000
Offset: 1

Views

Author

Don Willard (dwillard(AT)prairie.cc.il.us), Mar 23 2004

Keywords

Examples

			E.g., 2 factorial divided by 2 primorial is 1; 3 factorial is 6, divided by 3 primorial (3*2=6) is also 1; 5 factorial is 120, divided by 5 primorial (5*3*2=30) is 4 and so forth.
		

Crossrefs

Subsequence of A036691. - Chayim Lowen, Jul 23 2015

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1)*mul(i, i=ithprime(n-1)+1..ithprime(n)-1))
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Jan 15 2025
  • Mathematica
    Table[ Prime[n]! / Times @@ Prime[ Range[ n]], {n, 13}] (* Robert G. Wilson v, Mar 25 2004 *)
  • PARI
    a(n)=prime(n)!/prod(i=1,n,prime(i)) \\ Ralf Stephan, Dec 21 2013

Formula

p!/p# = A039716/A002110.
Partial products of A061214. - Lekraj Beedassy, Nov 06 2006
From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
a(n) = A036691(A065890(n)).
a(n) = Product_{k=1..n} prime(k)^(A085604(prime(n),k)-1).
a(n) = A049614(prime(n)).
a(n) = Product_{k=1..prime(n)} k^A066247(k). (End)

Extensions

Edited by Robert G. Wilson v, Mar 25 2004
More terms from Michel Marcus, Jan 15 2025